Loading…
Crowdsourced geolocation: Detailed exploration of mathematical and computational modeling approaches
In emergency situations, social media platforms produce a vast amount of real-time data that holds immense value, particularly in the first 72 h following a disaster event. Despite previous efforts, efficiently determining the geographical location of images related to a new disaster remains an unre...
Saved in:
Published in: | Cognitive systems research 2024-12, Vol.88, p.101266, Article 101266 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In emergency situations, social media platforms produce a vast amount of real-time data that holds immense value, particularly in the first 72 h following a disaster event. Despite previous efforts, efficiently determining the geographical location of images related to a new disaster remains an unresolved operational challenge. Currently, the state-of-the-art approach for dealing with these first response mapping is first filtering and then submitting the images to be geolocated to a volunteer crowd, assigning the images randomly to the volunteers. In this work, we extend our previous paper (Ballester et al., 2023) to explore the potential of artificial intelligence (AI) in aiding emergency responders and disaster relief organizations in geolocating social media images from a zone recently hit by a disaster. Our contributions include building two different models in which we try to (i) be able to learn volunteers’ error profiles and (ii) intelligently assign tasks to those volunteers who exhibit higher proficiency. Moreover, we present methods that outperform random allocation of tasks, analyze the effect on the models’ performance when varying numerous parameters, and show that for a given set of tasks and volunteers, we are able to process them with a significantly lower annotation budget, that is, we are able to make fewer volunteer solicitations without losing any quality on the final consensus. |
---|---|
ISSN: | 1389-0417 |
DOI: | 10.1016/j.cogsys.2024.101266 |