Loading…

In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2

Photocatalytic conversion of CO2 into valuable fuels is considered to be a promising approach for developing renewable and sustainable energy. However, due to poor light harvesting, low charge-separation efficiency and insufficient reaction sites on the surface of photocatalyst, the overall conversi...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2021-07, Vol.621, p.126582, Article 126582
Main Authors: Liu, Yang, Dong, Xinglong, Yuan, Qing, Liang, Jingshuang, Zhou, Yuanliang, Qu, Xinghao, Dong, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73
cites cdi_FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73
container_end_page
container_issue
container_start_page 126582
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 621
creator Liu, Yang
Dong, Xinglong
Yuan, Qing
Liang, Jingshuang
Zhou, Yuanliang
Qu, Xinghao
Dong, Bin
description Photocatalytic conversion of CO2 into valuable fuels is considered to be a promising approach for developing renewable and sustainable energy. However, due to poor light harvesting, low charge-separation efficiency and insufficient reaction sites on the surface of photocatalyst, the overall conversion efficiency is facing great challenges. Herein, we reported a novel WO3−x/MoO3−x heterojunction photocatalyst with abundant oxygen vacancies via a facile in-situ solvothermal process to tackle all of the aforementioned issues. Due to the well-matched band gap between WO3−x and MoO3−x, the resultant WO3−x/MoO3−x heterojunction can not only extend the optical response to overlap the NIR region, but also greatly promote the separation of electron-hole pairs. Meanwhile, the improvement of specific surface area and the creation of surface oxygen vacancies endow WO3−x/MoO3−x heterojunction with enhanced CO2 adsorption and activation capacities. As a result, WO3−x/MoO3−x heterojunction exhibits a significant improvement in the photoreduction activity of CO2. And its CO productivity is 40.2 μmol·g−1·h−1, which is 9.5 times higher than that of the pristine MoO3−x nanosheet. This strategy might provide a novel way to improve the comprehensive performance of photocatalysts and develop renewable energy sources. [Display omitted] •WO3−x/MoO3−x heterojunction is synthesized by an in-situ solvothermal process.•Well-matched band structures promote the separation of charge carriers.•Oxygen vacancies enhance CO2 adsorption and activation capabilities.•WO3−x/MoO3−x catalyst exhibits superior activity for photocatalytic CO2 reduction.
doi_str_mv 10.1016/j.colsurfa.2021.126582
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_colsurfa_2021_126582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775721004519</els_id><sourcerecordid>S0927775721004519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBeQLpNhOHCc7UMVPpaJuQCwtx54QVyWubKc0OzgDN-QkpAqsWc2MRu_Nmw-hS0pmlND8aj3TbhM6X6sZI4zOKMt5wY7QhBYiTbKUl8doQkomEiG4OEVnIawJIRkX5QR9Ltok2Njh0LexgWADdjV-WaXfH1_7q0c3NriBCN6tu1ZH61r8bmODVdW1RrURu33_Ci3eKa1abSHg2nkMdW2HYVhvGxedVlFt-mg19mC60WU4NF-xc3RSq02Ai986Rc93t0_zh2S5ul_Mb5aJTimLSSVMCSlTQCg3BRgueEm1FiKjhhVQMS2AF7qsWZlpzioDRFUF51mZG8UqkU5RPvpq70LwUMutt2_K95ISeQAp1_IPpDyAlCPIQXg9CmFIt7PgZTg8psFYDzpK4-x_Fj9_6ITg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2</title><source>Elsevier</source><creator>Liu, Yang ; Dong, Xinglong ; Yuan, Qing ; Liang, Jingshuang ; Zhou, Yuanliang ; Qu, Xinghao ; Dong, Bin</creator><creatorcontrib>Liu, Yang ; Dong, Xinglong ; Yuan, Qing ; Liang, Jingshuang ; Zhou, Yuanliang ; Qu, Xinghao ; Dong, Bin</creatorcontrib><description>Photocatalytic conversion of CO2 into valuable fuels is considered to be a promising approach for developing renewable and sustainable energy. However, due to poor light harvesting, low charge-separation efficiency and insufficient reaction sites on the surface of photocatalyst, the overall conversion efficiency is facing great challenges. Herein, we reported a novel WO3−x/MoO3−x heterojunction photocatalyst with abundant oxygen vacancies via a facile in-situ solvothermal process to tackle all of the aforementioned issues. Due to the well-matched band gap between WO3−x and MoO3−x, the resultant WO3−x/MoO3−x heterojunction can not only extend the optical response to overlap the NIR region, but also greatly promote the separation of electron-hole pairs. Meanwhile, the improvement of specific surface area and the creation of surface oxygen vacancies endow WO3−x/MoO3−x heterojunction with enhanced CO2 adsorption and activation capacities. As a result, WO3−x/MoO3−x heterojunction exhibits a significant improvement in the photoreduction activity of CO2. And its CO productivity is 40.2 μmol·g−1·h−1, which is 9.5 times higher than that of the pristine MoO3−x nanosheet. This strategy might provide a novel way to improve the comprehensive performance of photocatalysts and develop renewable energy sources. [Display omitted] •WO3−x/MoO3−x heterojunction is synthesized by an in-situ solvothermal process.•Well-matched band structures promote the separation of charge carriers.•Oxygen vacancies enhance CO2 adsorption and activation capabilities.•WO3−x/MoO3−x catalyst exhibits superior activity for photocatalytic CO2 reduction.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2021.126582</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Charge separation ; CO2 reduction ; Oxygen vacancy ; Photocatalysis ; WO3−x/MoO3−x heterojunction</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2021-07, Vol.621, p.126582, Article 126582</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73</citedby><cites>FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73</cites><orcidid>0000-0002-1980-8929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Dong, Xinglong</creatorcontrib><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Liang, Jingshuang</creatorcontrib><creatorcontrib>Zhou, Yuanliang</creatorcontrib><creatorcontrib>Qu, Xinghao</creatorcontrib><creatorcontrib>Dong, Bin</creatorcontrib><title>In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>Photocatalytic conversion of CO2 into valuable fuels is considered to be a promising approach for developing renewable and sustainable energy. However, due to poor light harvesting, low charge-separation efficiency and insufficient reaction sites on the surface of photocatalyst, the overall conversion efficiency is facing great challenges. Herein, we reported a novel WO3−x/MoO3−x heterojunction photocatalyst with abundant oxygen vacancies via a facile in-situ solvothermal process to tackle all of the aforementioned issues. Due to the well-matched band gap between WO3−x and MoO3−x, the resultant WO3−x/MoO3−x heterojunction can not only extend the optical response to overlap the NIR region, but also greatly promote the separation of electron-hole pairs. Meanwhile, the improvement of specific surface area and the creation of surface oxygen vacancies endow WO3−x/MoO3−x heterojunction with enhanced CO2 adsorption and activation capacities. As a result, WO3−x/MoO3−x heterojunction exhibits a significant improvement in the photoreduction activity of CO2. And its CO productivity is 40.2 μmol·g−1·h−1, which is 9.5 times higher than that of the pristine MoO3−x nanosheet. This strategy might provide a novel way to improve the comprehensive performance of photocatalysts and develop renewable energy sources. [Display omitted] •WO3−x/MoO3−x heterojunction is synthesized by an in-situ solvothermal process.•Well-matched band structures promote the separation of charge carriers.•Oxygen vacancies enhance CO2 adsorption and activation capabilities.•WO3−x/MoO3−x catalyst exhibits superior activity for photocatalytic CO2 reduction.</description><subject>Charge separation</subject><subject>CO2 reduction</subject><subject>Oxygen vacancy</subject><subject>Photocatalysis</subject><subject>WO3−x/MoO3−x heterojunction</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBeQLpNhOHCc7UMVPpaJuQCwtx54QVyWubKc0OzgDN-QkpAqsWc2MRu_Nmw-hS0pmlND8aj3TbhM6X6sZI4zOKMt5wY7QhBYiTbKUl8doQkomEiG4OEVnIawJIRkX5QR9Ltok2Njh0LexgWADdjV-WaXfH1_7q0c3NriBCN6tu1ZH61r8bmODVdW1RrURu33_Ci3eKa1abSHg2nkMdW2HYVhvGxedVlFt-mg19mC60WU4NF-xc3RSq02Ai986Rc93t0_zh2S5ul_Mb5aJTimLSSVMCSlTQCg3BRgueEm1FiKjhhVQMS2AF7qsWZlpzioDRFUF51mZG8UqkU5RPvpq70LwUMutt2_K95ISeQAp1_IPpDyAlCPIQXg9CmFIt7PgZTg8psFYDzpK4-x_Fj9_6ITg</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Liu, Yang</creator><creator>Dong, Xinglong</creator><creator>Yuan, Qing</creator><creator>Liang, Jingshuang</creator><creator>Zhou, Yuanliang</creator><creator>Qu, Xinghao</creator><creator>Dong, Bin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1980-8929</orcidid></search><sort><creationdate>20210720</creationdate><title>In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2</title><author>Liu, Yang ; Dong, Xinglong ; Yuan, Qing ; Liang, Jingshuang ; Zhou, Yuanliang ; Qu, Xinghao ; Dong, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge separation</topic><topic>CO2 reduction</topic><topic>Oxygen vacancy</topic><topic>Photocatalysis</topic><topic>WO3−x/MoO3−x heterojunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Dong, Xinglong</creatorcontrib><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Liang, Jingshuang</creatorcontrib><creatorcontrib>Zhou, Yuanliang</creatorcontrib><creatorcontrib>Qu, Xinghao</creatorcontrib><creatorcontrib>Dong, Bin</creatorcontrib><collection>CrossRef</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Dong, Xinglong</au><au>Yuan, Qing</au><au>Liang, Jingshuang</au><au>Zhou, Yuanliang</au><au>Qu, Xinghao</au><au>Dong, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2021-07-20</date><risdate>2021</risdate><volume>621</volume><spage>126582</spage><pages>126582-</pages><artnum>126582</artnum><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>Photocatalytic conversion of CO2 into valuable fuels is considered to be a promising approach for developing renewable and sustainable energy. However, due to poor light harvesting, low charge-separation efficiency and insufficient reaction sites on the surface of photocatalyst, the overall conversion efficiency is facing great challenges. Herein, we reported a novel WO3−x/MoO3−x heterojunction photocatalyst with abundant oxygen vacancies via a facile in-situ solvothermal process to tackle all of the aforementioned issues. Due to the well-matched band gap between WO3−x and MoO3−x, the resultant WO3−x/MoO3−x heterojunction can not only extend the optical response to overlap the NIR region, but also greatly promote the separation of electron-hole pairs. Meanwhile, the improvement of specific surface area and the creation of surface oxygen vacancies endow WO3−x/MoO3−x heterojunction with enhanced CO2 adsorption and activation capacities. As a result, WO3−x/MoO3−x heterojunction exhibits a significant improvement in the photoreduction activity of CO2. And its CO productivity is 40.2 μmol·g−1·h−1, which is 9.5 times higher than that of the pristine MoO3−x nanosheet. This strategy might provide a novel way to improve the comprehensive performance of photocatalysts and develop renewable energy sources. [Display omitted] •WO3−x/MoO3−x heterojunction is synthesized by an in-situ solvothermal process.•Well-matched band structures promote the separation of charge carriers.•Oxygen vacancies enhance CO2 adsorption and activation capabilities.•WO3−x/MoO3−x catalyst exhibits superior activity for photocatalytic CO2 reduction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2021.126582</doi><orcidid>https://orcid.org/0000-0002-1980-8929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2021-07, Vol.621, p.126582, Article 126582
issn 0927-7757
1873-4359
language eng
recordid cdi_crossref_primary_10_1016_j_colsurfa_2021_126582
source Elsevier
subjects Charge separation
CO2 reduction
Oxygen vacancy
Photocatalysis
WO3−x/MoO3−x heterojunction
title In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20synthesis%20of%20WO3%E2%80%93x/MoO3%E2%80%93x%20heterojunction%20with%20abundant%20oxygen%20vacancies%20for%20efficient%20photocatalytic%20reduction%20of%20CO2&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Liu,%20Yang&rft.date=2021-07-20&rft.volume=621&rft.spage=126582&rft.pages=126582-&rft.artnum=126582&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2021.126582&rft_dat=%3Celsevier_cross%3ES0927775721004519%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-b7d9e32ae015d8ed57591cc7741d28eb2c7e58c9f294c52bde0ab855496da2b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true