Loading…

Solid state – Green construction of starch- beaded Fe3O4@Ag nanocomposite as superior redox catalyst

In this present work, a novel approach which had been developed for the green synthesis of starch-decorated Fe3O4 @Ag nanocomposite by using one-step grinding method. The magnetic core shell nanocomposite was designed by magnetite (Fe3O4) surrounded by the starch (maize corn), a biopolymer which act...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2023-05, Vol.664, p.131117, Article 131117
Main Authors: Ravichandran, Ramya, Annamalai, Kumaresan, Annamalai, Arun, Elumalai, Sundaravadivel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this present work, a novel approach which had been developed for the green synthesis of starch-decorated Fe3O4 @Ag nanocomposite by using one-step grinding method. The magnetic core shell nanocomposite was designed by magnetite (Fe3O4) surrounded by the starch (maize corn), a biopolymer which act as a matrix for argentum (Ag) nanoparticles. This leads to the core shell structure starch – Fe3O4 @Ag nanocomposite (NC). The morphological and physical properties of the prepared nanocomposite was characterized by FE-SEM, HR-TEM, XPS, VSM, XRD, FT-IR and UV-Vis spectroscopic studies. The average particle size of the nanocomposite was found to be 9–11 nm. In addition, the nanocomposite gains a retentivity magnetisation of 25.50 emu/g makes the NC saveable for reusability. The nanocomposite had a greater stability for more than a month was confirmed with the help of UV-DRS and XRD analysis. The main advantage of the catalyst is temperature independent; During the conversion of benzaldehyde to benzoic acid, the product yield was achieved higher at ambient condition. Furthermore, the NC exposes the outstanding catalytic performance for reductive degradation of various carcinogenic water pollutants such as Methylene Blue (MB) and Methyl Red (MR) within 14 min and 18 min respectively. Moreover, it is also capable for reduction of 4-nitrophenol in an efficient manner. Thus, the NC holds a greater activity towards oxidation and reductive degradation reaction. [Display omitted]
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2023.131117