Loading…
Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential
Colloidal lignin particles (CLPs) have increased interest as green and sustainable materials for Pickering stabilizers, with particle design being an important step towards their effective use. In this context, the antisolvent precipitation method was selected to conduct a study aiming at understand...
Saved in:
Published in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2023-06, Vol.666, p.131287, Article 131287 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453 |
container_end_page | |
container_issue | |
container_start_page | 131287 |
container_title | Colloids and surfaces. A, Physicochemical and engineering aspects |
container_volume | 666 |
creator | Colucci, Giovana Santamaria-Echart, Arantzazu Silva, Samara C. Teixeira, Liandra G. Ribeiro, Andreia Rodrigues, Alírio E. Barreiro, M. Filomena |
description | Colloidal lignin particles (CLPs) have increased interest as green and sustainable materials for Pickering stabilizers, with particle design being an important step towards their effective use. In this context, the antisolvent precipitation method was selected to conduct a study aiming at understanding the effect of process variables (initial lignin concentration, antisolvent pH, final ethanol concentration, and antisolvent addition rate) on particle size, zeta potential, color parameters, and contact angle. Moreover, their Pickering stabilizing potential was preliminarily screened. The evaluation using a Fractional Factorial Design revealed that the particle size is significantly influenced by the initial lignin concentration (as it increases, larger particles are obtained) and the final ethanol concentration (as it increases, smaller sizes result). The zeta potential is significantly affected by the antisolvent pH and the initial lignin concentration; the increase in both parameters results in higher negative values. The color is significantly dependent on the used initial lignin concentration (as it increases, particles become lighter and the yellowish accentuates) and the antisolvent pH (as it increases, particles become darker). Both initial lignin concentration and final ethanol concentration increase promote hydrophobicity, whereas increasing the antisolvent pH and its addition rate turns particles more hydrophilic. Through this strategy, it was possible to achieve CLPs with promising Pickering stabilizing potential, putting in evidence the importance of understanding the production process to design effective particles for target applications.
[Display omitted] |
doi_str_mv | 10.1016/j.colsurfa.2023.131287 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_colsurfa_2023_131287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775723003710</els_id><sourcerecordid>S0927775723003710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxC8h8QIIdN3ayA5WnVAkW3VuOPWld3CSy3Uqw5cdxFGDLah46947mInRFSU4J5TfbXPcu7H2r8oIULKeMFpU4QjNaCZbNWVkfoxmpC5EJUYpTdBbClhAyL0U9Q1_3cADXDzvoIu5bnKxcb41y2Nl1Zzs8KB-tdhBw3Ph-v978bbCBkBgcolcR1jYhqjM4aA-QlOvRLm7Aevxm9Tv4cRWiaqyzn2M_9DEdtcpdoJNWuQCXP_UcrR4fVovnbPn69LK4W2aaVTxmjAMnvOJUaFUIWguigRVpMoYbXldAiVGsJdwUZcvnWlVNUxAjeMNrmJfsHPHJVvs-BA-tHLzdKf8hKZFjknIrf5OUY5JySjIJryeh10oN0sPBpj_CqKmrRFaEJeZ2YiA9cLDgZdAWOg3GetBRmt7-d-YbFmWO1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential</title><source>ScienceDirect Journals</source><creator>Colucci, Giovana ; Santamaria-Echart, Arantzazu ; Silva, Samara C. ; Teixeira, Liandra G. ; Ribeiro, Andreia ; Rodrigues, Alírio E. ; Barreiro, M. Filomena</creator><creatorcontrib>Colucci, Giovana ; Santamaria-Echart, Arantzazu ; Silva, Samara C. ; Teixeira, Liandra G. ; Ribeiro, Andreia ; Rodrigues, Alírio E. ; Barreiro, M. Filomena</creatorcontrib><description>Colloidal lignin particles (CLPs) have increased interest as green and sustainable materials for Pickering stabilizers, with particle design being an important step towards their effective use. In this context, the antisolvent precipitation method was selected to conduct a study aiming at understanding the effect of process variables (initial lignin concentration, antisolvent pH, final ethanol concentration, and antisolvent addition rate) on particle size, zeta potential, color parameters, and contact angle. Moreover, their Pickering stabilizing potential was preliminarily screened. The evaluation using a Fractional Factorial Design revealed that the particle size is significantly influenced by the initial lignin concentration (as it increases, larger particles are obtained) and the final ethanol concentration (as it increases, smaller sizes result). The zeta potential is significantly affected by the antisolvent pH and the initial lignin concentration; the increase in both parameters results in higher negative values. The color is significantly dependent on the used initial lignin concentration (as it increases, particles become lighter and the yellowish accentuates) and the antisolvent pH (as it increases, particles become darker). Both initial lignin concentration and final ethanol concentration increase promote hydrophobicity, whereas increasing the antisolvent pH and its addition rate turns particles more hydrophilic. Through this strategy, it was possible to achieve CLPs with promising Pickering stabilizing potential, putting in evidence the importance of understanding the production process to design effective particles for target applications.
[Display omitted]</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2023.131287</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Colloidal Particles ; Lignin ; Pickering Stabilizers ; Process Variables Effects ; Screening Design</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2023-06, Vol.666, p.131287, Article 131287</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453</citedby><cites>FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453</cites><orcidid>0000-0003-0107-7301 ; 0000-0003-1385-2037 ; 0000-0002-8715-5843 ; 0000-0002-6844-333X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Colucci, Giovana</creatorcontrib><creatorcontrib>Santamaria-Echart, Arantzazu</creatorcontrib><creatorcontrib>Silva, Samara C.</creatorcontrib><creatorcontrib>Teixeira, Liandra G.</creatorcontrib><creatorcontrib>Ribeiro, Andreia</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><creatorcontrib>Barreiro, M. Filomena</creatorcontrib><title>Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>Colloidal lignin particles (CLPs) have increased interest as green and sustainable materials for Pickering stabilizers, with particle design being an important step towards their effective use. In this context, the antisolvent precipitation method was selected to conduct a study aiming at understanding the effect of process variables (initial lignin concentration, antisolvent pH, final ethanol concentration, and antisolvent addition rate) on particle size, zeta potential, color parameters, and contact angle. Moreover, their Pickering stabilizing potential was preliminarily screened. The evaluation using a Fractional Factorial Design revealed that the particle size is significantly influenced by the initial lignin concentration (as it increases, larger particles are obtained) and the final ethanol concentration (as it increases, smaller sizes result). The zeta potential is significantly affected by the antisolvent pH and the initial lignin concentration; the increase in both parameters results in higher negative values. The color is significantly dependent on the used initial lignin concentration (as it increases, particles become lighter and the yellowish accentuates) and the antisolvent pH (as it increases, particles become darker). Both initial lignin concentration and final ethanol concentration increase promote hydrophobicity, whereas increasing the antisolvent pH and its addition rate turns particles more hydrophilic. Through this strategy, it was possible to achieve CLPs with promising Pickering stabilizing potential, putting in evidence the importance of understanding the production process to design effective particles for target applications.
[Display omitted]</description><subject>Colloidal Particles</subject><subject>Lignin</subject><subject>Pickering Stabilizers</subject><subject>Process Variables Effects</subject><subject>Screening Design</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxC8h8QIIdN3ayA5WnVAkW3VuOPWld3CSy3Uqw5cdxFGDLah46947mInRFSU4J5TfbXPcu7H2r8oIULKeMFpU4QjNaCZbNWVkfoxmpC5EJUYpTdBbClhAyL0U9Q1_3cADXDzvoIu5bnKxcb41y2Nl1Zzs8KB-tdhBw3Ph-v978bbCBkBgcolcR1jYhqjM4aA-QlOvRLm7Aevxm9Tv4cRWiaqyzn2M_9DEdtcpdoJNWuQCXP_UcrR4fVovnbPn69LK4W2aaVTxmjAMnvOJUaFUIWguigRVpMoYbXldAiVGsJdwUZcvnWlVNUxAjeMNrmJfsHPHJVvs-BA-tHLzdKf8hKZFjknIrf5OUY5JySjIJryeh10oN0sPBpj_CqKmrRFaEJeZ2YiA9cLDgZdAWOg3GetBRmt7-d-YbFmWO1w</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Colucci, Giovana</creator><creator>Santamaria-Echart, Arantzazu</creator><creator>Silva, Samara C.</creator><creator>Teixeira, Liandra G.</creator><creator>Ribeiro, Andreia</creator><creator>Rodrigues, Alírio E.</creator><creator>Barreiro, M. Filomena</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>RCLKO</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0107-7301</orcidid><orcidid>https://orcid.org/0000-0003-1385-2037</orcidid><orcidid>https://orcid.org/0000-0002-8715-5843</orcidid><orcidid>https://orcid.org/0000-0002-6844-333X</orcidid></search><sort><creationdate>20230605</creationdate><title>Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential</title><author>Colucci, Giovana ; Santamaria-Echart, Arantzazu ; Silva, Samara C. ; Teixeira, Liandra G. ; Ribeiro, Andreia ; Rodrigues, Alírio E. ; Barreiro, M. Filomena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Colloidal Particles</topic><topic>Lignin</topic><topic>Pickering Stabilizers</topic><topic>Process Variables Effects</topic><topic>Screening Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colucci, Giovana</creatorcontrib><creatorcontrib>Santamaria-Echart, Arantzazu</creatorcontrib><creatorcontrib>Silva, Samara C.</creatorcontrib><creatorcontrib>Teixeira, Liandra G.</creatorcontrib><creatorcontrib>Ribeiro, Andreia</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><creatorcontrib>Barreiro, M. Filomena</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>RCAAP open access repository</collection><collection>CrossRef</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colucci, Giovana</au><au>Santamaria-Echart, Arantzazu</au><au>Silva, Samara C.</au><au>Teixeira, Liandra G.</au><au>Ribeiro, Andreia</au><au>Rodrigues, Alírio E.</au><au>Barreiro, M. Filomena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2023-06-05</date><risdate>2023</risdate><volume>666</volume><spage>131287</spage><pages>131287-</pages><artnum>131287</artnum><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>Colloidal lignin particles (CLPs) have increased interest as green and sustainable materials for Pickering stabilizers, with particle design being an important step towards their effective use. In this context, the antisolvent precipitation method was selected to conduct a study aiming at understanding the effect of process variables (initial lignin concentration, antisolvent pH, final ethanol concentration, and antisolvent addition rate) on particle size, zeta potential, color parameters, and contact angle. Moreover, their Pickering stabilizing potential was preliminarily screened. The evaluation using a Fractional Factorial Design revealed that the particle size is significantly influenced by the initial lignin concentration (as it increases, larger particles are obtained) and the final ethanol concentration (as it increases, smaller sizes result). The zeta potential is significantly affected by the antisolvent pH and the initial lignin concentration; the increase in both parameters results in higher negative values. The color is significantly dependent on the used initial lignin concentration (as it increases, particles become lighter and the yellowish accentuates) and the antisolvent pH (as it increases, particles become darker). Both initial lignin concentration and final ethanol concentration increase promote hydrophobicity, whereas increasing the antisolvent pH and its addition rate turns particles more hydrophilic. Through this strategy, it was possible to achieve CLPs with promising Pickering stabilizing potential, putting in evidence the importance of understanding the production process to design effective particles for target applications.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2023.131287</doi><orcidid>https://orcid.org/0000-0003-0107-7301</orcidid><orcidid>https://orcid.org/0000-0003-1385-2037</orcidid><orcidid>https://orcid.org/0000-0002-8715-5843</orcidid><orcidid>https://orcid.org/0000-0002-6844-333X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7757 |
ispartof | Colloids and surfaces. A, Physicochemical and engineering aspects, 2023-06, Vol.666, p.131287, Article 131287 |
issn | 0927-7757 1873-4359 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_colsurfa_2023_131287 |
source | ScienceDirect Journals |
subjects | Colloidal Particles Lignin Pickering Stabilizers Process Variables Effects Screening Design |
title | Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20colloidal%20lignin%20particles%20through%20particle%20design%20strategies%20and%20screening%20of%20their%20Pickering%20stabilizing%20potential&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Colucci,%20Giovana&rft.date=2023-06-05&rft.volume=666&rft.spage=131287&rft.pages=131287-&rft.artnum=131287&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2023.131287&rft_dat=%3Celsevier_cross%3ES0927775723003710%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-36e6068617ca271970ce3217cdd6d698e10da3f06d25f64ca8bb20d76b69e453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |