Loading…

Facile preparation of self-healable and recyclable multilayered graphene-based nanocomposites for electromagnetic interference shielding applications

Harmful disruptions are a result of the miniaturization and enhancement of contemporary electronics and communication. Self-healable, flexible, and lightweight elastomeric electromagnetic (EM) wave absorbers have replaced metal-based EM wave reflectors as state-of-the-art. Intending to boost the ela...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2023-11, Vol.676, p.132244, Article 132244
Main Authors: Das, Palash, Katheria, Ankur, Nayak, Jasomati, Das, Souvik, Nath, Krishnendu, Ghosh, Suman Kumar, Naskar, Kinsuk, Das, Narayan Ch
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Harmful disruptions are a result of the miniaturization and enhancement of contemporary electronics and communication. Self-healable, flexible, and lightweight elastomeric electromagnetic (EM) wave absorbers have replaced metal-based EM wave reflectors as state-of-the-art. Intending to boost the elastomeric nanocomposites' several functions, Herein, we prepared self-healable, flexible, and lightweight ZnO-XNBR/RGO nanocomposites with excellent thermal management and EMI shielding performance. A 1 mm thick nanocomposites film with DC electrical conductivity of 0.02 S/cm, thermal conductivity of 0.75 W/mK, a self-healing capability of 54.7%, 100% recyclability, excellent flexibility, and mechanical performance has been recorded with an EMI SE of − 34.2 dB in the X-band (8.2–12.4 GHz). Additionally, the uninterrupted conductive network remains unharmed by recycling, expanding, flexing, prolonged exposure to natural light, as well as chemical treatment, justifying its overall mechanical and chemical performance. These extended distortions exhibit greater than 90% retention of their shielding effectiveness (SE). In combination, the properties of our diversified elastomeric nanocomposites, including their superior shielding capability, self-healing capability, thermal management, recycling ability, and outstanding mechanical performance, provide an important guideline for developing robust elastomeric nanocomposites. [Display omitted]
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2023.132244