Loading…
Controllable synthesis of phenolic resin-based carbon aerogel templated by graphene oxide for high-performance supercapacitors
In this work, porous phenol formaldehyde carbon aerogel (PFCA) was facilely manufactured by using simple hydrothermal method and ambient pressure drying. The micromorphology, specific area and electrochemical characteristic of the produced carbon aerogel were examined with scanning electron microsco...
Saved in:
Published in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2024-01, Vol.681, p.132736, Article 132736 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, porous phenol formaldehyde carbon aerogel (PFCA) was facilely manufactured by using simple hydrothermal method and ambient pressure drying. The micromorphology, specific area and electrochemical characteristic of the produced carbon aerogel were examined with scanning electron microscopy, nitrogen adsorption-desorption tests, cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The effects of catalyst and phenol addition, and solvent type on the structure and property have been systematically studied. The results show that the PFCA has a three-dimensional "bead chain" network structure and the typical PFCA-7.5/8 sample exhibits high specific surface area of 759.02 m2 g−1. Moreover, the graphene oxide composited phenol formaldehyde carbon aerogel (GO/PFCA) presenting a lamellar structure was developed by using GO as template. The optimum PFCA-7.5/8 prepared with ethanol as solvent has the best electrochemical performance of 138.33 F g−1 at 5 mV s−1 in 6 M KOH electrolyte, which can be improved to 150.00 F g−1 for the GO/PFCA-3 sample.
[Display omitted] |
---|---|
ISSN: | 0927-7757 1873-4359 |
DOI: | 10.1016/j.colsurfa.2023.132736 |