Loading…

Zinc-ion hybrid supercapacitors with hierarchically N-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density

Zinc-ion hybrid capacitors (ZIHCs) with high energy density is commercial need as energy storing devices, but facile preparation is still a challenge. Herein, we proposed a combined strategy for preparation of ZIHCs with high performance. For this purpose, a nanoemulsion assembly approach with Pluro...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2024-08, Vol.694, p.134122, Article 134122
Main Authors: Yang, Yang, Zhou, Yunlong, Ji, Peng, Yang, Pingping, Xu, Jianxiong, Li, Na
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c259t-21cdce9649474e8e5ea4cc52e4f842da0108d5c878ce8a037fcbf9ca298e1e123
container_end_page
container_issue
container_start_page 134122
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 694
creator Yang, Yang
Zhou, Yunlong
Ji, Peng
Yang, Pingping
Xu, Jianxiong
Li, Na
description Zinc-ion hybrid capacitors (ZIHCs) with high energy density is commercial need as energy storing devices, but facile preparation is still a challenge. Herein, we proposed a combined strategy for preparation of ZIHCs with high performance. For this purpose, a nanoemulsion assembly approach with Pluronic F127 as structure-directing agent, 1, 3, 5-trimethylbenzene as pore-expanding agent, polydopamine as carbon and nitrogen source, was used to synthesize hierarchically N-doped porous carbon spheres (N-HNCSs). The optimized sample of N-HNCS-1 exhibited uniform size of 150 nm, hierarchically porous structure, large surface area (705.46 m2 g−1), and N-doping amount of 6.51 %. These properties were beneficial for the transportation of the electrolyte ions resulted in that the N-HNCS-1 electrode displayed superior electrochemical performance with specific capacity of 142 mAh g−1. Furthermore, the Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs achieves an exceptionally high energy density of 347.7 Wh kg−1, which is 3-fold higher than that of Zn//ZnSO4//N-HNCS-1 ZIHCs. To elucidate this outstanding performance, we investigate the mechanisms involved, including Zn2+ deposition/stripping, SO42-/I- adsorption/desorption, Zn4SO4(OH)6⋅0.5 H2O precipitation/dissolution, and redox reactions relating to iodine ions. The incorporation of ZnI2 redox-electrolyte significantly enhanced the energy density by providing prominent pseudocapacitance via the faradaic reaction. Therefore, the high performance of Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs is attributed to the introduction of nitrogen (N) species, advantageous 3D carbonaceous framework, and redox reactions triggered by adding zinc iodide (ZnI2) into the aqueous zinc sulfate (ZnSO4) electrolyte. This groundbreaking research opens up possibilities for the development of high-energy ZIHCs, and advancements in energy storage technology. [Display omitted]
doi_str_mv 10.1016/j.colsurfa.2024.134122
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_colsurfa_2024_134122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092777572400983X</els_id><sourcerecordid>S092777572400983X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-21cdce9649474e8e5ea4cc52e4f842da0108d5c878ce8a037fcbf9ca298e1e123</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBeQLpLUdp052oIqfShVdAJtuLGc8Ia5CHNkpkHtwYFIV1qzeYvQ-zfsIueZsxhlfzHcz8E3ch8rMBBNyxlPJhTghE56rNJFpVpySCSuESpTK1Dm5iHHHGJOZKibke-taSJxvaT2UwVka9x0GMJ0B1_sQ6afra1o7DCZA7cA0zUCfEus7tLTzwe8jBRPKEYANQh-8xUhNa-m2fd7I-bZdCRrQ-q-_ezP0SPGrdqXrael97EcSthjeBmqxja4fLslZZZqIV785Ja_3dy_Lx2S9eVgtb9cJiKzoE8HBAhYLWUglMccMjQTIBMoql8IaxlluM8hVDpgblqoKyqoAI4ocOXKRTsniyIXgYwxY6S64dxMGzZk-uNU7_edWH9zqo9uxeHMs4vjdxyhHR3DYAloXxpHaevcf4gddTIru</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zinc-ion hybrid supercapacitors with hierarchically N-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yang, Yang ; Zhou, Yunlong ; Ji, Peng ; Yang, Pingping ; Xu, Jianxiong ; Li, Na</creator><creatorcontrib>Yang, Yang ; Zhou, Yunlong ; Ji, Peng ; Yang, Pingping ; Xu, Jianxiong ; Li, Na</creatorcontrib><description>Zinc-ion hybrid capacitors (ZIHCs) with high energy density is commercial need as energy storing devices, but facile preparation is still a challenge. Herein, we proposed a combined strategy for preparation of ZIHCs with high performance. For this purpose, a nanoemulsion assembly approach with Pluronic F127 as structure-directing agent, 1, 3, 5-trimethylbenzene as pore-expanding agent, polydopamine as carbon and nitrogen source, was used to synthesize hierarchically N-doped porous carbon spheres (N-HNCSs). The optimized sample of N-HNCS-1 exhibited uniform size of 150 nm, hierarchically porous structure, large surface area (705.46 m2 g−1), and N-doping amount of 6.51 %. These properties were beneficial for the transportation of the electrolyte ions resulted in that the N-HNCS-1 electrode displayed superior electrochemical performance with specific capacity of 142 mAh g−1. Furthermore, the Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs achieves an exceptionally high energy density of 347.7 Wh kg−1, which is 3-fold higher than that of Zn//ZnSO4//N-HNCS-1 ZIHCs. To elucidate this outstanding performance, we investigate the mechanisms involved, including Zn2+ deposition/stripping, SO42-/I- adsorption/desorption, Zn4SO4(OH)6⋅0.5 H2O precipitation/dissolution, and redox reactions relating to iodine ions. The incorporation of ZnI2 redox-electrolyte significantly enhanced the energy density by providing prominent pseudocapacitance via the faradaic reaction. Therefore, the high performance of Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs is attributed to the introduction of nitrogen (N) species, advantageous 3D carbonaceous framework, and redox reactions triggered by adding zinc iodide (ZnI2) into the aqueous zinc sulfate (ZnSO4) electrolyte. This groundbreaking research opens up possibilities for the development of high-energy ZIHCs, and advancements in energy storage technology. [Display omitted]</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2024.134122</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hierarchically N-doped porous carbon spheres ; Nanoemulsion assembly approach ; Redox electrolyte ; Zinc-ion hybrid capacitors</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2024-08, Vol.694, p.134122, Article 134122</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-21cdce9649474e8e5ea4cc52e4f842da0108d5c878ce8a037fcbf9ca298e1e123</cites><orcidid>0000-0003-4642-109X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Zhou, Yunlong</creatorcontrib><creatorcontrib>Ji, Peng</creatorcontrib><creatorcontrib>Yang, Pingping</creatorcontrib><creatorcontrib>Xu, Jianxiong</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><title>Zinc-ion hybrid supercapacitors with hierarchically N-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>Zinc-ion hybrid capacitors (ZIHCs) with high energy density is commercial need as energy storing devices, but facile preparation is still a challenge. Herein, we proposed a combined strategy for preparation of ZIHCs with high performance. For this purpose, a nanoemulsion assembly approach with Pluronic F127 as structure-directing agent, 1, 3, 5-trimethylbenzene as pore-expanding agent, polydopamine as carbon and nitrogen source, was used to synthesize hierarchically N-doped porous carbon spheres (N-HNCSs). The optimized sample of N-HNCS-1 exhibited uniform size of 150 nm, hierarchically porous structure, large surface area (705.46 m2 g−1), and N-doping amount of 6.51 %. These properties were beneficial for the transportation of the electrolyte ions resulted in that the N-HNCS-1 electrode displayed superior electrochemical performance with specific capacity of 142 mAh g−1. Furthermore, the Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs achieves an exceptionally high energy density of 347.7 Wh kg−1, which is 3-fold higher than that of Zn//ZnSO4//N-HNCS-1 ZIHCs. To elucidate this outstanding performance, we investigate the mechanisms involved, including Zn2+ deposition/stripping, SO42-/I- adsorption/desorption, Zn4SO4(OH)6⋅0.5 H2O precipitation/dissolution, and redox reactions relating to iodine ions. The incorporation of ZnI2 redox-electrolyte significantly enhanced the energy density by providing prominent pseudocapacitance via the faradaic reaction. Therefore, the high performance of Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs is attributed to the introduction of nitrogen (N) species, advantageous 3D carbonaceous framework, and redox reactions triggered by adding zinc iodide (ZnI2) into the aqueous zinc sulfate (ZnSO4) electrolyte. This groundbreaking research opens up possibilities for the development of high-energy ZIHCs, and advancements in energy storage technology. [Display omitted]</description><subject>Hierarchically N-doped porous carbon spheres</subject><subject>Nanoemulsion assembly approach</subject><subject>Redox electrolyte</subject><subject>Zinc-ion hybrid capacitors</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBeQLpLUdp052oIqfShVdAJtuLGc8Ia5CHNkpkHtwYFIV1qzeYvQ-zfsIueZsxhlfzHcz8E3ch8rMBBNyxlPJhTghE56rNJFpVpySCSuESpTK1Dm5iHHHGJOZKibke-taSJxvaT2UwVka9x0GMJ0B1_sQ6afra1o7DCZA7cA0zUCfEus7tLTzwe8jBRPKEYANQh-8xUhNa-m2fd7I-bZdCRrQ-q-_ezP0SPGrdqXrael97EcSthjeBmqxja4fLslZZZqIV785Ja_3dy_Lx2S9eVgtb9cJiKzoE8HBAhYLWUglMccMjQTIBMoql8IaxlluM8hVDpgblqoKyqoAI4ocOXKRTsniyIXgYwxY6S64dxMGzZk-uNU7_edWH9zqo9uxeHMs4vjdxyhHR3DYAloXxpHaevcf4gddTIru</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Yang, Yang</creator><creator>Zhou, Yunlong</creator><creator>Ji, Peng</creator><creator>Yang, Pingping</creator><creator>Xu, Jianxiong</creator><creator>Li, Na</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4642-109X</orcidid></search><sort><creationdate>20240805</creationdate><title>Zinc-ion hybrid supercapacitors with hierarchically N-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density</title><author>Yang, Yang ; Zhou, Yunlong ; Ji, Peng ; Yang, Pingping ; Xu, Jianxiong ; Li, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-21cdce9649474e8e5ea4cc52e4f842da0108d5c878ce8a037fcbf9ca298e1e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hierarchically N-doped porous carbon spheres</topic><topic>Nanoemulsion assembly approach</topic><topic>Redox electrolyte</topic><topic>Zinc-ion hybrid capacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Zhou, Yunlong</creatorcontrib><creatorcontrib>Ji, Peng</creatorcontrib><creatorcontrib>Yang, Pingping</creatorcontrib><creatorcontrib>Xu, Jianxiong</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><collection>CrossRef</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Zhou, Yunlong</au><au>Ji, Peng</au><au>Yang, Pingping</au><au>Xu, Jianxiong</au><au>Li, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc-ion hybrid supercapacitors with hierarchically N-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2024-08-05</date><risdate>2024</risdate><volume>694</volume><spage>134122</spage><pages>134122-</pages><artnum>134122</artnum><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>Zinc-ion hybrid capacitors (ZIHCs) with high energy density is commercial need as energy storing devices, but facile preparation is still a challenge. Herein, we proposed a combined strategy for preparation of ZIHCs with high performance. For this purpose, a nanoemulsion assembly approach with Pluronic F127 as structure-directing agent, 1, 3, 5-trimethylbenzene as pore-expanding agent, polydopamine as carbon and nitrogen source, was used to synthesize hierarchically N-doped porous carbon spheres (N-HNCSs). The optimized sample of N-HNCS-1 exhibited uniform size of 150 nm, hierarchically porous structure, large surface area (705.46 m2 g−1), and N-doping amount of 6.51 %. These properties were beneficial for the transportation of the electrolyte ions resulted in that the N-HNCS-1 electrode displayed superior electrochemical performance with specific capacity of 142 mAh g−1. Furthermore, the Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs achieves an exceptionally high energy density of 347.7 Wh kg−1, which is 3-fold higher than that of Zn//ZnSO4//N-HNCS-1 ZIHCs. To elucidate this outstanding performance, we investigate the mechanisms involved, including Zn2+ deposition/stripping, SO42-/I- adsorption/desorption, Zn4SO4(OH)6⋅0.5 H2O precipitation/dissolution, and redox reactions relating to iodine ions. The incorporation of ZnI2 redox-electrolyte significantly enhanced the energy density by providing prominent pseudocapacitance via the faradaic reaction. Therefore, the high performance of Zn//ZnSO4 + ZnI2//N-HNCS-1 ZIHCs is attributed to the introduction of nitrogen (N) species, advantageous 3D carbonaceous framework, and redox reactions triggered by adding zinc iodide (ZnI2) into the aqueous zinc sulfate (ZnSO4) electrolyte. This groundbreaking research opens up possibilities for the development of high-energy ZIHCs, and advancements in energy storage technology. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2024.134122</doi><orcidid>https://orcid.org/0000-0003-4642-109X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2024-08, Vol.694, p.134122, Article 134122
issn 0927-7757
1873-4359
language eng
recordid cdi_crossref_primary_10_1016_j_colsurfa_2024_134122
source ScienceDirect Freedom Collection 2022-2024
subjects Hierarchically N-doped porous carbon spheres
Nanoemulsion assembly approach
Redox electrolyte
Zinc-ion hybrid capacitors
title Zinc-ion hybrid supercapacitors with hierarchically N-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc-ion%20hybrid%20supercapacitors%20with%20hierarchically%20N-doped%20porous%20carbon%20electrodes%20and%20ZnSO4/ZnI2%20redox%20electrolyte%20exhibit%20boosted%20energy%20density&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Yang,%20Yang&rft.date=2024-08-05&rft.volume=694&rft.spage=134122&rft.pages=134122-&rft.artnum=134122&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2024.134122&rft_dat=%3Celsevier_cross%3ES092777572400983X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-21cdce9649474e8e5ea4cc52e4f842da0108d5c878ce8a037fcbf9ca298e1e123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true