Loading…

Biotemplate synthesis of SnO2 hollow porous structures for enhanced isopropanol sensing performance

Researchers are showing significant interest in the development of nanostructures with hierarchical porosity. This study introduces an eco-friendly, cost-effective, and straightforward method to create SnO2 hollow porous nanostructures using the peony as a biotemplate. A comprehensive analysis of th...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2024-11, Vol.701, p.134967, Article 134967
Main Authors: Du, Liyong, Guan, Xin, Hao, Liping, Liu, Yi, Sun, Heming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c189t-8585ab44e1d3a6cfa7f2458c8739d794bb69fec554716af7cd667f2f51f0237e3
container_end_page
container_issue
container_start_page 134967
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 701
creator Du, Liyong
Guan, Xin
Hao, Liping
Liu, Yi
Sun, Heming
description Researchers are showing significant interest in the development of nanostructures with hierarchical porosity. This study introduces an eco-friendly, cost-effective, and straightforward method to create SnO2 hollow porous nanostructures using the peony as a biotemplate. A comprehensive analysis of the gas sensing characteristics of these hierarchical SnO2 hollow porous nanostructures is conducted. The results show that the gas sensor based on SnO2 showcases relatively high response values measuring 18.3 and exhibits rapid response speed of 1 s to 100 ppm isopropanol, even at a comparably low operating temperature of 180 °C. Additionally, the sensor displays good repeatability and long-term stability, which can be attributed to the inherent advantages stemming from its distinct structure. Therefore, this study provides experimental and theoretical foundations for the potential application of hollow porous SnO2 structures in sensor technology. [Display omitted]
doi_str_mv 10.1016/j.colsurfa.2024.134967
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_colsurfa_2024_134967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775724018314</els_id><sourcerecordid>S0927775724018314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-8585ab44e1d3a6cfa7f2458c8739d794bb69fec554716af7cd667f2f51f0237e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRb0AiVL4BeQfSLATP5IdUPGSKnUBrC3XGVNXaRx5ElD_nkSFNavZnHt15xByw1nOGVe3-9zFFsfkbV6wQuS8FLXSZ2TB6kJnWkt9QS4R94wxIXW9IO4hxAEOfWsHoHjshh1gQBo9fes2Bd3Fto3ftI8pjkhxSKMbxgRIfUwUup3tHDQ0YOxT7G0XW4rQYeg-aQ9pYg4zcEXOvW0Rrn_vknw8Pb6vXrL15vl1db_OHK_qIatkJe1WCOBNaZXzVvtCyMpVuqwbXYvtVtUenJRCc2W9do1SE-Il96woNZRLok69LkXEBN70KRxsOhrOzKzH7M2fHjPrMSc9U_DuFIRp3VeAZNAFmF8LCdxgmhj-q_gBtKp3JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biotemplate synthesis of SnO2 hollow porous structures for enhanced isopropanol sensing performance</title><source>ScienceDirect Freedom Collection</source><creator>Du, Liyong ; Guan, Xin ; Hao, Liping ; Liu, Yi ; Sun, Heming</creator><creatorcontrib>Du, Liyong ; Guan, Xin ; Hao, Liping ; Liu, Yi ; Sun, Heming</creatorcontrib><description>Researchers are showing significant interest in the development of nanostructures with hierarchical porosity. This study introduces an eco-friendly, cost-effective, and straightforward method to create SnO2 hollow porous nanostructures using the peony as a biotemplate. A comprehensive analysis of the gas sensing characteristics of these hierarchical SnO2 hollow porous nanostructures is conducted. The results show that the gas sensor based on SnO2 showcases relatively high response values measuring 18.3 and exhibits rapid response speed of 1 s to 100 ppm isopropanol, even at a comparably low operating temperature of 180 °C. Additionally, the sensor displays good repeatability and long-term stability, which can be attributed to the inherent advantages stemming from its distinct structure. Therefore, this study provides experimental and theoretical foundations for the potential application of hollow porous SnO2 structures in sensor technology. [Display omitted]</description><identifier>ISSN: 0927-7757</identifier><identifier>DOI: 10.1016/j.colsurfa.2024.134967</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biotemplate ; Gas sensor ; Hollow porous structure ; Isopropanol ; SnO2</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2024-11, Vol.701, p.134967, Article 134967</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-8585ab44e1d3a6cfa7f2458c8739d794bb69fec554716af7cd667f2f51f0237e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Du, Liyong</creatorcontrib><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Hao, Liping</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Sun, Heming</creatorcontrib><title>Biotemplate synthesis of SnO2 hollow porous structures for enhanced isopropanol sensing performance</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>Researchers are showing significant interest in the development of nanostructures with hierarchical porosity. This study introduces an eco-friendly, cost-effective, and straightforward method to create SnO2 hollow porous nanostructures using the peony as a biotemplate. A comprehensive analysis of the gas sensing characteristics of these hierarchical SnO2 hollow porous nanostructures is conducted. The results show that the gas sensor based on SnO2 showcases relatively high response values measuring 18.3 and exhibits rapid response speed of 1 s to 100 ppm isopropanol, even at a comparably low operating temperature of 180 °C. Additionally, the sensor displays good repeatability and long-term stability, which can be attributed to the inherent advantages stemming from its distinct structure. Therefore, this study provides experimental and theoretical foundations for the potential application of hollow porous SnO2 structures in sensor technology. [Display omitted]</description><subject>Biotemplate</subject><subject>Gas sensor</subject><subject>Hollow porous structure</subject><subject>Isopropanol</subject><subject>SnO2</subject><issn>0927-7757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRb0AiVL4BeQfSLATP5IdUPGSKnUBrC3XGVNXaRx5ElD_nkSFNavZnHt15xByw1nOGVe3-9zFFsfkbV6wQuS8FLXSZ2TB6kJnWkt9QS4R94wxIXW9IO4hxAEOfWsHoHjshh1gQBo9fes2Bd3Fto3ftI8pjkhxSKMbxgRIfUwUup3tHDQ0YOxT7G0XW4rQYeg-aQ9pYg4zcEXOvW0Rrn_vknw8Pb6vXrL15vl1db_OHK_qIatkJe1WCOBNaZXzVvtCyMpVuqwbXYvtVtUenJRCc2W9do1SE-Il96woNZRLok69LkXEBN70KRxsOhrOzKzH7M2fHjPrMSc9U_DuFIRp3VeAZNAFmF8LCdxgmhj-q_gBtKp3JQ</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Du, Liyong</creator><creator>Guan, Xin</creator><creator>Hao, Liping</creator><creator>Liu, Yi</creator><creator>Sun, Heming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241120</creationdate><title>Biotemplate synthesis of SnO2 hollow porous structures for enhanced isopropanol sensing performance</title><author>Du, Liyong ; Guan, Xin ; Hao, Liping ; Liu, Yi ; Sun, Heming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-8585ab44e1d3a6cfa7f2458c8739d794bb69fec554716af7cd667f2f51f0237e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotemplate</topic><topic>Gas sensor</topic><topic>Hollow porous structure</topic><topic>Isopropanol</topic><topic>SnO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Liyong</creatorcontrib><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Hao, Liping</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Sun, Heming</creatorcontrib><collection>CrossRef</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Liyong</au><au>Guan, Xin</au><au>Hao, Liping</au><au>Liu, Yi</au><au>Sun, Heming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotemplate synthesis of SnO2 hollow porous structures for enhanced isopropanol sensing performance</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2024-11-20</date><risdate>2024</risdate><volume>701</volume><spage>134967</spage><pages>134967-</pages><artnum>134967</artnum><issn>0927-7757</issn><abstract>Researchers are showing significant interest in the development of nanostructures with hierarchical porosity. This study introduces an eco-friendly, cost-effective, and straightforward method to create SnO2 hollow porous nanostructures using the peony as a biotemplate. A comprehensive analysis of the gas sensing characteristics of these hierarchical SnO2 hollow porous nanostructures is conducted. The results show that the gas sensor based on SnO2 showcases relatively high response values measuring 18.3 and exhibits rapid response speed of 1 s to 100 ppm isopropanol, even at a comparably low operating temperature of 180 °C. Additionally, the sensor displays good repeatability and long-term stability, which can be attributed to the inherent advantages stemming from its distinct structure. Therefore, this study provides experimental and theoretical foundations for the potential application of hollow porous SnO2 structures in sensor technology. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2024.134967</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2024-11, Vol.701, p.134967, Article 134967
issn 0927-7757
language eng
recordid cdi_crossref_primary_10_1016_j_colsurfa_2024_134967
source ScienceDirect Freedom Collection
subjects Biotemplate
Gas sensor
Hollow porous structure
Isopropanol
SnO2
title Biotemplate synthesis of SnO2 hollow porous structures for enhanced isopropanol sensing performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotemplate%20synthesis%20of%20SnO2%20hollow%20porous%20structures%20for%20enhanced%20isopropanol%20sensing%20performance&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Du,%20Liyong&rft.date=2024-11-20&rft.volume=701&rft.spage=134967&rft.pages=134967-&rft.artnum=134967&rft.issn=0927-7757&rft_id=info:doi/10.1016/j.colsurfa.2024.134967&rft_dat=%3Celsevier_cross%3ES0927775724018314%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c189t-8585ab44e1d3a6cfa7f2458c8739d794bb69fec554716af7cd667f2f51f0237e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true