Loading…

Investigation of multi-dimensional transfer effects in applied smouldering systems: A 2D numerical modelling approach

Applied smouldering systems are gaining popularity for a variety of energy conversion applications. Radial heat loss plays a crucial role in these systems, as they cause multi-dimensional effects (e.g., in temperature, airflow, and chemical activity). These effects can control system operation limit...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2022-12, Vol.246, p.112385, Article 112385
Main Authors: Miry, Seyed Ziaedin, Zanoni, Marco A.B., Rashwan, Tarek L., Torero, José L., Gerhard, Jason I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Applied smouldering systems are gaining popularity for a variety of energy conversion applications. Radial heat loss plays a crucial role in these systems, as they cause multi-dimensional effects (e.g., in temperature, airflow, and chemical activity). These effects can control system operation limits and performance; therefore, a robust understanding of these multi-dimensional effects is crucial for design engineers. A multi-dimensional applied smouldering numerical model was developed that couples key physics and chemistry. The model was validated against highly instrumented smouldering experiments. The model was then used to qualitatively investigate the multi-dimensional effects and quantitatively analyze the energy balance that dictates the limits of the self-sustaining process. Moreover, a sensitivity analysis of the system energy efficiency, air flow, fuel concentration, and porous medium permeability was completed. The results provide insight into the interconnected nature of key physical (e.g., temperature, air flow, permeability) and chemical (e.g., oxygen concentration, reaction intensity) qualities. Altogether, this work provides a novel tool for investigating, designing, and optimizing smouldering reactors for a range of applications such as soil remediation, waste-to-energy, and improving sanitation in the developing world.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2022.112385