Loading…

Largest and smallest area triangles on imprecise points

•Maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments).•Minimizing the largest triangle can be done in O(n4) time.•Maximizing the smallest triangle is NP-hard.•Minimizing the smallest triangle can be done in O(n2) time.•We also discuss to what extent our...

Full description

Saved in:
Bibliographic Details
Published in:Computational geometry : theory and applications 2021-04, Vol.95, p.101742, Article 101742
Main Authors: Keikha, Vahideh, Löffler, Maarten, Mohades, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723
cites cdi_FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723
container_end_page
container_issue
container_start_page 101742
container_title Computational geometry : theory and applications
container_volume 95
creator Keikha, Vahideh
Löffler, Maarten
Mohades, Ali
description •Maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments).•Minimizing the largest triangle can be done in O(n4) time.•Maximizing the smallest triangle is NP-hard.•Minimizing the smallest triangle can be done in O(n2) time.•We also discuss to what extent our results can be generalized to polygons with k>3 sides. Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the complexity of the four resulting computational problems, and we show that three of them admit polynomial-time algorithms, while the fourth is NP-hard. Specifically, we show that maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments); minimizing the largest triangle can be done in O(n4) time; maximizing the smallest triangle is NP-hard; but minimizing the smallest triangle can be done in O(n2) time. We also discuss to what extent our results can be generalized to polygons with k>3 sides.
doi_str_mv 10.1016/j.comgeo.2020.101742
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_comgeo_2020_101742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092577212030136X</els_id><sourcerecordid>S092577212030136X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723</originalsourceid><addsrcrecordid>eNp9j89KxDAYxHNQcF19Aw99gdbkS9q0F0EW_ywUvOg5pMmXktI2S1IE397u1rOnYQZmmB8hD4wWjLLqcShMmHoMBVC4RFLAFdnRBspcSmA35DalgVIKUDY7Ilsde0xLpmebpUmP48VE1NkSvZ771Wdhzvx0imh8wuwU_LykO3Lt9Jjw_k_35Ov15fPwnrcfb8fDc5sbTqslLy3nkgOHugMp6xKRW9FQWjIrUIDktTWVdpI5ppG7xnZSdk5woAyFlsD3RGy7JoaUIjp1in7S8Ucxqs7AalAbsDoDqw14rT1tNVy_fXuMKhmPs0HrV4xF2eD_H_gFIaRh7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Largest and smallest area triangles on imprecise points</title><source>ScienceDirect Freedom Collection</source><creator>Keikha, Vahideh ; Löffler, Maarten ; Mohades, Ali</creator><creatorcontrib>Keikha, Vahideh ; Löffler, Maarten ; Mohades, Ali</creatorcontrib><description>•Maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments).•Minimizing the largest triangle can be done in O(n4) time.•Maximizing the smallest triangle is NP-hard.•Minimizing the smallest triangle can be done in O(n2) time.•We also discuss to what extent our results can be generalized to polygons with k&gt;3 sides. Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the complexity of the four resulting computational problems, and we show that three of them admit polynomial-time algorithms, while the fourth is NP-hard. Specifically, we show that maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments); minimizing the largest triangle can be done in O(n4) time; maximizing the smallest triangle is NP-hard; but minimizing the smallest triangle can be done in O(n2) time. We also discuss to what extent our results can be generalized to polygons with k&gt;3 sides.</description><identifier>ISSN: 0925-7721</identifier><identifier>DOI: 10.1016/j.comgeo.2020.101742</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational geometry ; k-gon ; Maximum area triangle</subject><ispartof>Computational geometry : theory and applications, 2021-04, Vol.95, p.101742, Article 101742</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723</citedby><cites>FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Keikha, Vahideh</creatorcontrib><creatorcontrib>Löffler, Maarten</creatorcontrib><creatorcontrib>Mohades, Ali</creatorcontrib><title>Largest and smallest area triangles on imprecise points</title><title>Computational geometry : theory and applications</title><description>•Maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments).•Minimizing the largest triangle can be done in O(n4) time.•Maximizing the smallest triangle is NP-hard.•Minimizing the smallest triangle can be done in O(n2) time.•We also discuss to what extent our results can be generalized to polygons with k&gt;3 sides. Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the complexity of the four resulting computational problems, and we show that three of them admit polynomial-time algorithms, while the fourth is NP-hard. Specifically, we show that maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments); minimizing the largest triangle can be done in O(n4) time; maximizing the smallest triangle is NP-hard; but minimizing the smallest triangle can be done in O(n2) time. We also discuss to what extent our results can be generalized to polygons with k&gt;3 sides.</description><subject>Computational geometry</subject><subject>k-gon</subject><subject>Maximum area triangle</subject><issn>0925-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j89KxDAYxHNQcF19Aw99gdbkS9q0F0EW_ywUvOg5pMmXktI2S1IE397u1rOnYQZmmB8hD4wWjLLqcShMmHoMBVC4RFLAFdnRBspcSmA35DalgVIKUDY7Ilsde0xLpmebpUmP48VE1NkSvZ771Wdhzvx0imh8wuwU_LykO3Lt9Jjw_k_35Ov15fPwnrcfb8fDc5sbTqslLy3nkgOHugMp6xKRW9FQWjIrUIDktTWVdpI5ppG7xnZSdk5woAyFlsD3RGy7JoaUIjp1in7S8Ucxqs7AalAbsDoDqw14rT1tNVy_fXuMKhmPs0HrV4xF2eD_H_gFIaRh7g</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Keikha, Vahideh</creator><creator>Löffler, Maarten</creator><creator>Mohades, Ali</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202104</creationdate><title>Largest and smallest area triangles on imprecise points</title><author>Keikha, Vahideh ; Löffler, Maarten ; Mohades, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational geometry</topic><topic>k-gon</topic><topic>Maximum area triangle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keikha, Vahideh</creatorcontrib><creatorcontrib>Löffler, Maarten</creatorcontrib><creatorcontrib>Mohades, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Computational geometry : theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keikha, Vahideh</au><au>Löffler, Maarten</au><au>Mohades, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Largest and smallest area triangles on imprecise points</atitle><jtitle>Computational geometry : theory and applications</jtitle><date>2021-04</date><risdate>2021</risdate><volume>95</volume><spage>101742</spage><pages>101742-</pages><artnum>101742</artnum><issn>0925-7721</issn><abstract>•Maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments).•Minimizing the largest triangle can be done in O(n4) time.•Maximizing the smallest triangle is NP-hard.•Minimizing the smallest triangle can be done in O(n2) time.•We also discuss to what extent our results can be generalized to polygons with k&gt;3 sides. Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the complexity of the four resulting computational problems, and we show that three of them admit polynomial-time algorithms, while the fourth is NP-hard. Specifically, we show that maximizing the largest triangle can be done in O(n2) time (or in O(nlog⁡n) time for unit segments); minimizing the largest triangle can be done in O(n4) time; maximizing the smallest triangle is NP-hard; but minimizing the smallest triangle can be done in O(n2) time. We also discuss to what extent our results can be generalized to polygons with k&gt;3 sides.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comgeo.2020.101742</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-7721
ispartof Computational geometry : theory and applications, 2021-04, Vol.95, p.101742, Article 101742
issn 0925-7721
language eng
recordid cdi_crossref_primary_10_1016_j_comgeo_2020_101742
source ScienceDirect Freedom Collection
subjects Computational geometry
k-gon
Maximum area triangle
title Largest and smallest area triangles on imprecise points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Largest%20and%20smallest%20area%20triangles%20on%20imprecise%20points&rft.jtitle=Computational%20geometry%20:%20theory%20and%20applications&rft.au=Keikha,%20Vahideh&rft.date=2021-04&rft.volume=95&rft.spage=101742&rft.pages=101742-&rft.artnum=101742&rft.issn=0925-7721&rft_id=info:doi/10.1016/j.comgeo.2020.101742&rft_dat=%3Celsevier_cross%3ES092577212030136X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-5d33732328b27785ee3d490051d4e42738dc6af71f1ae3f9db77bf43201e4a723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true