Loading…

On the geometric priority set cover problem

We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set system admits a planar support. We show that the problem is APX-hard even for unit disks in the plane and...

Full description

Saved in:
Bibliographic Details
Published in:Computational geometry : theory and applications 2023-06, Vol.112, p.101984, Article 101984
Main Authors: Banik, Aritra, Raman, Rajiv, Ray, Saurabh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c255t-273de9908ff5f16539e927b1e98ec6baa445022e9225bc490827f30f5ad75e743
container_end_page
container_issue
container_start_page 101984
container_title Computational geometry : theory and applications
container_volume 112
creator Banik, Aritra
Raman, Rajiv
Ray, Saurabh
description We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set system admits a planar support. We show that the problem is APX-hard even for unit disks in the plane and argue that in this case the standard local search algorithm can output a solution that is arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also present a few simple results for unit squares and orthants in the plane.
doi_str_mv 10.1016/j.comgeo.2023.101984
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_comgeo_2023_101984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925772123000044</els_id><sourcerecordid>S0925772123000044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-273de9908ff5f16539e927b1e98ec6baa445022e9225bc490827f30f5ad75e743</originalsourceid><addsrcrecordid>eNp9j7tqwzAUhjW00DTNG3TwXuxKx5JlLYUSeoNAlmYWtnzUysRRkUQgb18Zd-504Of8l4-Qe0YrRlnzOFbGT1_oK6BQz5Jq-RVZUQWilBLYDbmNcaSUAgi1Ig_7U5G-sciOCVNwpvgJzgeXLkXEVBh_xpAl3x9xuiPXtjtG3PzdNTm8vnxu38vd_u1j-7wrDQiRSpD1gErR1lphWSNqhQpkz1C1aJq-6zgXuT2LIHrD8yNIW1MrukEKlLxeE77kmuBjDGh13jR14aIZ1TOkHvUCqWdIvUBm29Niw7zt7DDoaByeDA4uoEl68O7_gF_g1V2W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the geometric priority set cover problem</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Banik, Aritra ; Raman, Rajiv ; Ray, Saurabh</creator><creatorcontrib>Banik, Aritra ; Raman, Rajiv ; Ray, Saurabh</creatorcontrib><description>We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set system admits a planar support. We show that the problem is APX-hard even for unit disks in the plane and argue that in this case the standard local search algorithm can output a solution that is arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also present a few simple results for unit squares and orthants in the plane.</description><identifier>ISSN: 0925-7721</identifier><identifier>DOI: 10.1016/j.comgeo.2023.101984</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation algorithms ; Geometric set cover ; Local search ; Quasi-uniform sampling</subject><ispartof>Computational geometry : theory and applications, 2023-06, Vol.112, p.101984, Article 101984</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-273de9908ff5f16539e927b1e98ec6baa445022e9225bc490827f30f5ad75e743</cites><orcidid>0000-0002-7544-6125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banik, Aritra</creatorcontrib><creatorcontrib>Raman, Rajiv</creatorcontrib><creatorcontrib>Ray, Saurabh</creatorcontrib><title>On the geometric priority set cover problem</title><title>Computational geometry : theory and applications</title><description>We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set system admits a planar support. We show that the problem is APX-hard even for unit disks in the plane and argue that in this case the standard local search algorithm can output a solution that is arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also present a few simple results for unit squares and orthants in the plane.</description><subject>Approximation algorithms</subject><subject>Geometric set cover</subject><subject>Local search</subject><subject>Quasi-uniform sampling</subject><issn>0925-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j7tqwzAUhjW00DTNG3TwXuxKx5JlLYUSeoNAlmYWtnzUysRRkUQgb18Zd-504Of8l4-Qe0YrRlnzOFbGT1_oK6BQz5Jq-RVZUQWilBLYDbmNcaSUAgi1Ig_7U5G-sciOCVNwpvgJzgeXLkXEVBh_xpAl3x9xuiPXtjtG3PzdNTm8vnxu38vd_u1j-7wrDQiRSpD1gErR1lphWSNqhQpkz1C1aJq-6zgXuT2LIHrD8yNIW1MrukEKlLxeE77kmuBjDGh13jR14aIZ1TOkHvUCqWdIvUBm29Niw7zt7DDoaByeDA4uoEl68O7_gF_g1V2W</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Banik, Aritra</creator><creator>Raman, Rajiv</creator><creator>Ray, Saurabh</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7544-6125</orcidid></search><sort><creationdate>202306</creationdate><title>On the geometric priority set cover problem</title><author>Banik, Aritra ; Raman, Rajiv ; Ray, Saurabh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-273de9908ff5f16539e927b1e98ec6baa445022e9225bc490827f30f5ad75e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation algorithms</topic><topic>Geometric set cover</topic><topic>Local search</topic><topic>Quasi-uniform sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banik, Aritra</creatorcontrib><creatorcontrib>Raman, Rajiv</creatorcontrib><creatorcontrib>Ray, Saurabh</creatorcontrib><collection>CrossRef</collection><jtitle>Computational geometry : theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banik, Aritra</au><au>Raman, Rajiv</au><au>Ray, Saurabh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometric priority set cover problem</atitle><jtitle>Computational geometry : theory and applications</jtitle><date>2023-06</date><risdate>2023</risdate><volume>112</volume><spage>101984</spage><pages>101984-</pages><artnum>101984</artnum><issn>0925-7721</issn><abstract>We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set system admits a planar support. We show that the problem is APX-hard even for unit disks in the plane and argue that in this case the standard local search algorithm can output a solution that is arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also present a few simple results for unit squares and orthants in the plane.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comgeo.2023.101984</doi><orcidid>https://orcid.org/0000-0002-7544-6125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-7721
ispartof Computational geometry : theory and applications, 2023-06, Vol.112, p.101984, Article 101984
issn 0925-7721
language eng
recordid cdi_crossref_primary_10_1016_j_comgeo_2023_101984
source ScienceDirect Freedom Collection 2022-2024
subjects Approximation algorithms
Geometric set cover
Local search
Quasi-uniform sampling
title On the geometric priority set cover problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometric%20priority%20set%20cover%20problem&rft.jtitle=Computational%20geometry%20:%20theory%20and%20applications&rft.au=Banik,%20Aritra&rft.date=2023-06&rft.volume=112&rft.spage=101984&rft.pages=101984-&rft.artnum=101984&rft.issn=0925-7721&rft_id=info:doi/10.1016/j.comgeo.2023.101984&rft_dat=%3Celsevier_cross%3ES0925772123000044%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-273de9908ff5f16539e927b1e98ec6baa445022e9225bc490827f30f5ad75e743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true