Loading…
A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms
A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial feat...
Saved in:
Published in: | Computational materials science 2022-01, Vol.201, p.110878, Article 110878 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903 |
container_end_page | |
container_issue | |
container_start_page | 110878 |
container_title | Computational materials science |
container_volume | 201 |
creator | Elapolu, Mohan S.R. Shishir, Md. Imrul Reza Tabarraei, Alireza |
description | A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations.
[Display omitted] |
doi_str_mv | 10.1016/j.commatsci.2021.110878 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_commatsci_2021_110878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025621005905</els_id><sourcerecordid>S0927025621005905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6h-wK5ekeRlCH1BoJt2LWRZdpTalpGUgP--MinddjXDzNzL3APAI0YlRpg_HUvjh0GnaFxJEMElxkgKeQVWWIqqQBLha7BCFREFIht-C-5iPKKsrCRZgWELR3-2PdTTFLw2B9j6AGM6NbMbO2iCNt8wbybd6eT8CN0IJ9_PJswx6b53o4Vd0NPB5uYUF82QXZZxb3UYl4HuOx9cOgzxHty0uo_24beuwdfL8-furdh_vL7vtvvCUM5SQXGD0IayHMRgWTNDiRQ1Z4xyK7lpakpqyuolEyVCcG5YVduKcyJxaytE10BcfE3wMQbbqim4QYdZYaQWauqo_qiphZq6UMvK7UVp83tnZ4PKF3Y0tnHBmqQa7_71-AFrjnv9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</title><source>ScienceDirect Freedom Collection</source><creator>Elapolu, Mohan S.R. ; Shishir, Md. Imrul Reza ; Tabarraei, Alireza</creator><creatorcontrib>Elapolu, Mohan S.R. ; Shishir, Md. Imrul Reza ; Tabarraei, Alireza</creatorcontrib><description>A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations.
[Display omitted]</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2021.110878</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bidirectional recurrent neural network ; Crack propagation ; Fracture ; Machine learning ; Polycrystalline graphene</subject><ispartof>Computational materials science, 2022-01, Vol.201, p.110878, Article 110878</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</citedby><cites>FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</cites><orcidid>0000-0002-4182-4677 ; 0000-0003-1226-1710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Elapolu, Mohan S.R.</creatorcontrib><creatorcontrib>Shishir, Md. Imrul Reza</creatorcontrib><creatorcontrib>Tabarraei, Alireza</creatorcontrib><title>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</title><title>Computational materials science</title><description>A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations.
[Display omitted]</description><subject>Bidirectional recurrent neural network</subject><subject>Crack propagation</subject><subject>Fracture</subject><subject>Machine learning</subject><subject>Polycrystalline graphene</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6h-wK5ekeRlCH1BoJt2LWRZdpTalpGUgP--MinddjXDzNzL3APAI0YlRpg_HUvjh0GnaFxJEMElxkgKeQVWWIqqQBLha7BCFREFIht-C-5iPKKsrCRZgWELR3-2PdTTFLw2B9j6AGM6NbMbO2iCNt8wbybd6eT8CN0IJ9_PJswx6b53o4Vd0NPB5uYUF82QXZZxb3UYl4HuOx9cOgzxHty0uo_24beuwdfL8-furdh_vL7vtvvCUM5SQXGD0IayHMRgWTNDiRQ1Z4xyK7lpakpqyuolEyVCcG5YVduKcyJxaytE10BcfE3wMQbbqim4QYdZYaQWauqo_qiphZq6UMvK7UVp83tnZ4PKF3Y0tnHBmqQa7_71-AFrjnv9</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Elapolu, Mohan S.R.</creator><creator>Shishir, Md. Imrul Reza</creator><creator>Tabarraei, Alireza</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4182-4677</orcidid><orcidid>https://orcid.org/0000-0003-1226-1710</orcidid></search><sort><creationdate>202201</creationdate><title>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</title><author>Elapolu, Mohan S.R. ; Shishir, Md. Imrul Reza ; Tabarraei, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bidirectional recurrent neural network</topic><topic>Crack propagation</topic><topic>Fracture</topic><topic>Machine learning</topic><topic>Polycrystalline graphene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elapolu, Mohan S.R.</creatorcontrib><creatorcontrib>Shishir, Md. Imrul Reza</creatorcontrib><creatorcontrib>Tabarraei, Alireza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elapolu, Mohan S.R.</au><au>Shishir, Md. Imrul Reza</au><au>Tabarraei, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</atitle><jtitle>Computational materials science</jtitle><date>2022-01</date><risdate>2022</risdate><volume>201</volume><spage>110878</spage><pages>110878-</pages><artnum>110878</artnum><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2021.110878</doi><orcidid>https://orcid.org/0000-0002-4182-4677</orcidid><orcidid>https://orcid.org/0000-0003-1226-1710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2022-01, Vol.201, p.110878, Article 110878 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_commatsci_2021_110878 |
source | ScienceDirect Freedom Collection |
subjects | Bidirectional recurrent neural network Crack propagation Fracture Machine learning Polycrystalline graphene |
title | A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20studying%20crack%20propagation%20in%20polycrystalline%20graphene%20using%20machine%20learning%20algorithms&rft.jtitle=Computational%20materials%20science&rft.au=Elapolu,%20Mohan%20S.R.&rft.date=2022-01&rft.volume=201&rft.spage=110878&rft.pages=110878-&rft.artnum=110878&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2021.110878&rft_dat=%3Celsevier_cross%3ES0927025621005905%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |