Loading…

A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms

A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial feat...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science 2022-01, Vol.201, p.110878, Article 110878
Main Authors: Elapolu, Mohan S.R., Shishir, Md. Imrul Reza, Tabarraei, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903
cites cdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903
container_end_page
container_issue
container_start_page 110878
container_title Computational materials science
container_volume 201
creator Elapolu, Mohan S.R.
Shishir, Md. Imrul Reza
Tabarraei, Alireza
description A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations. [Display omitted]
doi_str_mv 10.1016/j.commatsci.2021.110878
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_commatsci_2021_110878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025621005905</els_id><sourcerecordid>S0927025621005905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6h-wK5ekeRlCH1BoJt2LWRZdpTalpGUgP--MinddjXDzNzL3APAI0YlRpg_HUvjh0GnaFxJEMElxkgKeQVWWIqqQBLha7BCFREFIht-C-5iPKKsrCRZgWELR3-2PdTTFLw2B9j6AGM6NbMbO2iCNt8wbybd6eT8CN0IJ9_PJswx6b53o4Vd0NPB5uYUF82QXZZxb3UYl4HuOx9cOgzxHty0uo_24beuwdfL8-furdh_vL7vtvvCUM5SQXGD0IayHMRgWTNDiRQ1Z4xyK7lpakpqyuolEyVCcG5YVduKcyJxaytE10BcfE3wMQbbqim4QYdZYaQWauqo_qiphZq6UMvK7UVp83tnZ4PKF3Y0tnHBmqQa7_71-AFrjnv9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</title><source>ScienceDirect Freedom Collection</source><creator>Elapolu, Mohan S.R. ; Shishir, Md. Imrul Reza ; Tabarraei, Alireza</creator><creatorcontrib>Elapolu, Mohan S.R. ; Shishir, Md. Imrul Reza ; Tabarraei, Alireza</creatorcontrib><description>A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations. [Display omitted]</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2021.110878</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bidirectional recurrent neural network ; Crack propagation ; Fracture ; Machine learning ; Polycrystalline graphene</subject><ispartof>Computational materials science, 2022-01, Vol.201, p.110878, Article 110878</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</citedby><cites>FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</cites><orcidid>0000-0002-4182-4677 ; 0000-0003-1226-1710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Elapolu, Mohan S.R.</creatorcontrib><creatorcontrib>Shishir, Md. Imrul Reza</creatorcontrib><creatorcontrib>Tabarraei, Alireza</creatorcontrib><title>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</title><title>Computational materials science</title><description>A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations. [Display omitted]</description><subject>Bidirectional recurrent neural network</subject><subject>Crack propagation</subject><subject>Fracture</subject><subject>Machine learning</subject><subject>Polycrystalline graphene</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6h-wK5ekeRlCH1BoJt2LWRZdpTalpGUgP--MinddjXDzNzL3APAI0YlRpg_HUvjh0GnaFxJEMElxkgKeQVWWIqqQBLha7BCFREFIht-C-5iPKKsrCRZgWELR3-2PdTTFLw2B9j6AGM6NbMbO2iCNt8wbybd6eT8CN0IJ9_PJswx6b53o4Vd0NPB5uYUF82QXZZxb3UYl4HuOx9cOgzxHty0uo_24beuwdfL8-furdh_vL7vtvvCUM5SQXGD0IayHMRgWTNDiRQ1Z4xyK7lpakpqyuolEyVCcG5YVduKcyJxaytE10BcfE3wMQbbqim4QYdZYaQWauqo_qiphZq6UMvK7UVp83tnZ4PKF3Y0tnHBmqQa7_71-AFrjnv9</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Elapolu, Mohan S.R.</creator><creator>Shishir, Md. Imrul Reza</creator><creator>Tabarraei, Alireza</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4182-4677</orcidid><orcidid>https://orcid.org/0000-0003-1226-1710</orcidid></search><sort><creationdate>202201</creationdate><title>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</title><author>Elapolu, Mohan S.R. ; Shishir, Md. Imrul Reza ; Tabarraei, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bidirectional recurrent neural network</topic><topic>Crack propagation</topic><topic>Fracture</topic><topic>Machine learning</topic><topic>Polycrystalline graphene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elapolu, Mohan S.R.</creatorcontrib><creatorcontrib>Shishir, Md. Imrul Reza</creatorcontrib><creatorcontrib>Tabarraei, Alireza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elapolu, Mohan S.R.</au><au>Shishir, Md. Imrul Reza</au><au>Tabarraei, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms</atitle><jtitle>Computational materials science</jtitle><date>2022-01</date><risdate>2022</risdate><volume>201</volume><spage>110878</spage><pages>110878-</pages><artnum>110878</artnum><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>A machine learning model is proposed to predict the brittle fracture of polycrystalline graphene under tensile loading. The model employs a convolutional neural network, bidirectional recurrent neural network, and fully connected layer to process the spatial and sequential features. The spatial features are grain orientations and location of grain boundaries whereas sequential features are associated with the crack growth. Molecular dynamics modeling is used to obtain the fracture process in pre-cracked polycrystalline graphene sheet subjected to tensile loading. The data from molecular dynamic simulations along with novel image-processing techniques are used to prepare the data set required to train and test the proposed model. Crack growth obtained from the machine learning model shows a close agreement with the molecular dynamic simulations. The proposed machine learning model predicts crack growth instantaneously avoiding the computational costs associated with molecular dynamics simulations. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2021.110878</doi><orcidid>https://orcid.org/0000-0002-4182-4677</orcidid><orcidid>https://orcid.org/0000-0003-1226-1710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2022-01, Vol.201, p.110878, Article 110878
issn 0927-0256
1879-0801
language eng
recordid cdi_crossref_primary_10_1016_j_commatsci_2021_110878
source ScienceDirect Freedom Collection
subjects Bidirectional recurrent neural network
Crack propagation
Fracture
Machine learning
Polycrystalline graphene
title A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20studying%20crack%20propagation%20in%20polycrystalline%20graphene%20using%20machine%20learning%20algorithms&rft.jtitle=Computational%20materials%20science&rft.au=Elapolu,%20Mohan%20S.R.&rft.date=2022-01&rft.volume=201&rft.spage=110878&rft.pages=110878-&rft.artnum=110878&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2021.110878&rft_dat=%3Celsevier_cross%3ES0927025621005905%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-31d00534108c18b4c3287b64436e86cdb32b34b0927327766c49be966281fe903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true