Loading…

Activation energy of homogeneous nucleation of Zr hydride: Density functional theory calculation

Considering the nucleation process of Zr hydrides as phase transformation from hexagonal closed-packed (HCP) to face-centered tetragonal (FCT) structure, we calculated the activation energy of the homogeneous nucleation process of Zr hydrides and atomic rearrangement during nucleation for Zr4H, Zr2H...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science 2022-12, Vol.215, p.111769, Article 111769
Main Author: Ishii, Akio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering the nucleation process of Zr hydrides as phase transformation from hexagonal closed-packed (HCP) to face-centered tetragonal (FCT) structure, we calculated the activation energy of the homogeneous nucleation process of Zr hydrides and atomic rearrangement during nucleation for Zr4H, Zr2H, ZrH and ZrH2 using density functional theory calculations and minimum energy path detection. At 0 K limit, although ZrH and ZrH2 have lower chemical potentials and are more energetically stable than Zr4H and Zr2H, the latter have lower activation energies for nucleation. At finite temperatures, the crossover of activation energies occurs around 300 K, where ZrH becomes the most possible candidate with the lowest activation energy. This was explained by the difference in the atomic rearrangement and change in phonon frequency during phase transformation. [Display omitted]
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2022.111769