Loading…

COMODO: Configurable morphology distance operator

Data-driven approaches have been recognized as a new paradigm for establishing and exploring process-morphology-property relationships. However, typical exploration methods deliver high-dimensional morphologies that pose the challenge of extracting the key features and patterns that could guide the...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science 2024-09, Vol.244, p.113208, Article 113208
Main Authors: Desai, Parth, Juneja, Namit, Chandola, Varun, Zola, Jaroslaw, Wodo, Olga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c261t-7f56847af4c2bc8f56b19dff0dbdc07040a501e6ac801cd3c2c026319e945bff3
container_end_page
container_issue
container_start_page 113208
container_title Computational materials science
container_volume 244
creator Desai, Parth
Juneja, Namit
Chandola, Varun
Zola, Jaroslaw
Wodo, Olga
description Data-driven approaches have been recognized as a new paradigm for establishing and exploring process-morphology-property relationships. However, typical exploration methods deliver high-dimensional morphologies that pose the challenge of extracting the key features and patterns that could guide the processing and materials design. The high dimensionality also hampers the organization of the data and the associated data analytics. As a solution, the currently available approaches either take a simplified view of the morphology, e.g., focusing on pixels in the morphology images, or apply transformations that average out structural descriptors of morphologies. To address these shortcomings, we propose a new computationally efficient and configurable distance operator that takes an intermediate approach. Our main idea is to represent the morphology as a graph where graph connectivity reflects the relative arrangement of components (e.g., grains, droplets) in the morphology, and the label of the graph vertices captures the domain-specific information of each characteristic domain. Next, given the graph abstraction, the distance between morphologies is computed using vectorized graph-based representation. Because both morphology graph structure and associated signature functions have clear interpretations, our distance measure can be easily tailored to specific applications. Our results demonstrate the superior performance of the proposed approach on data from simulation and synthetic data, including in real-world applications like morphologies clustering. [Display omitted]
doi_str_mv 10.1016/j.commatsci.2024.113208
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_commatsci_2024_113208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025624004294</els_id><sourcerecordid>S0927025624004294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-7f56847af4c2bc8f56b19dff0dbdc07040a501e6ac801cd3c2c026319e945bff3</originalsourceid><addsrcrecordid>eNqFj01OwzAUhL0AiVI4A7lAwrOTOAm7KvwUqSgbWFvOs10cJXVkB6TeHldFbFmNRpoZzUfIHYWMAuX3Q4ZumuQS0GYMWJFRmjOoL8gKGlalwEp-Ra5DGCCmm5qtCG27t-6xe0hadzB2_-VlP-pkcn7-dKPbHxNlwyIPqBM3ay8X52_IpZFj0Le_uiYfz0_v7TbddS-v7WaXIuN0SStT8rqopCmQ9VhH19NGGQOqVwgVFCBLoJpLrIGiypEhMJ7TRjdF2RuTr0l13kXvQvDaiNnbSfqjoCBOtGIQf7TiRCvOtLG5OTd1vPdttRcxoSODsl7jIpSz_278AOdRZFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COMODO: Configurable morphology distance operator</title><source>ScienceDirect Freedom Collection</source><creator>Desai, Parth ; Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga</creator><creatorcontrib>Desai, Parth ; Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga</creatorcontrib><description>Data-driven approaches have been recognized as a new paradigm for establishing and exploring process-morphology-property relationships. However, typical exploration methods deliver high-dimensional morphologies that pose the challenge of extracting the key features and patterns that could guide the processing and materials design. The high dimensionality also hampers the organization of the data and the associated data analytics. As a solution, the currently available approaches either take a simplified view of the morphology, e.g., focusing on pixels in the morphology images, or apply transformations that average out structural descriptors of morphologies. To address these shortcomings, we propose a new computationally efficient and configurable distance operator that takes an intermediate approach. Our main idea is to represent the morphology as a graph where graph connectivity reflects the relative arrangement of components (e.g., grains, droplets) in the morphology, and the label of the graph vertices captures the domain-specific information of each characteristic domain. Next, given the graph abstraction, the distance between morphologies is computed using vectorized graph-based representation. Because both morphology graph structure and associated signature functions have clear interpretations, our distance measure can be easily tailored to specific applications. Our results demonstrate the superior performance of the proposed approach on data from simulation and synthetic data, including in real-world applications like morphologies clustering. [Display omitted]</description><identifier>ISSN: 0927-0256</identifier><identifier>DOI: 10.1016/j.commatsci.2024.113208</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clustering ; Configurable signature functions ; Distance operator ; Graph ; Morphology informatics</subject><ispartof>Computational materials science, 2024-09, Vol.244, p.113208, Article 113208</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-7f56847af4c2bc8f56b19dff0dbdc07040a501e6ac801cd3c2c026319e945bff3</cites><orcidid>0009-0002-6829-6779 ; 0000-0001-8990-1398 ; 0009-0009-0527-7969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Desai, Parth</creatorcontrib><creatorcontrib>Juneja, Namit</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Wodo, Olga</creatorcontrib><title>COMODO: Configurable morphology distance operator</title><title>Computational materials science</title><description>Data-driven approaches have been recognized as a new paradigm for establishing and exploring process-morphology-property relationships. However, typical exploration methods deliver high-dimensional morphologies that pose the challenge of extracting the key features and patterns that could guide the processing and materials design. The high dimensionality also hampers the organization of the data and the associated data analytics. As a solution, the currently available approaches either take a simplified view of the morphology, e.g., focusing on pixels in the morphology images, or apply transformations that average out structural descriptors of morphologies. To address these shortcomings, we propose a new computationally efficient and configurable distance operator that takes an intermediate approach. Our main idea is to represent the morphology as a graph where graph connectivity reflects the relative arrangement of components (e.g., grains, droplets) in the morphology, and the label of the graph vertices captures the domain-specific information of each characteristic domain. Next, given the graph abstraction, the distance between morphologies is computed using vectorized graph-based representation. Because both morphology graph structure and associated signature functions have clear interpretations, our distance measure can be easily tailored to specific applications. Our results demonstrate the superior performance of the proposed approach on data from simulation and synthetic data, including in real-world applications like morphologies clustering. [Display omitted]</description><subject>Clustering</subject><subject>Configurable signature functions</subject><subject>Distance operator</subject><subject>Graph</subject><subject>Morphology informatics</subject><issn>0927-0256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj01OwzAUhL0AiVI4A7lAwrOTOAm7KvwUqSgbWFvOs10cJXVkB6TeHldFbFmNRpoZzUfIHYWMAuX3Q4ZumuQS0GYMWJFRmjOoL8gKGlalwEp-Ra5DGCCmm5qtCG27t-6xe0hadzB2_-VlP-pkcn7-dKPbHxNlwyIPqBM3ay8X52_IpZFj0Le_uiYfz0_v7TbddS-v7WaXIuN0SStT8rqopCmQ9VhH19NGGQOqVwgVFCBLoJpLrIGiypEhMJ7TRjdF2RuTr0l13kXvQvDaiNnbSfqjoCBOtGIQf7TiRCvOtLG5OTd1vPdttRcxoSODsl7jIpSz_278AOdRZFU</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Desai, Parth</creator><creator>Juneja, Namit</creator><creator>Chandola, Varun</creator><creator>Zola, Jaroslaw</creator><creator>Wodo, Olga</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-6829-6779</orcidid><orcidid>https://orcid.org/0000-0001-8990-1398</orcidid><orcidid>https://orcid.org/0009-0009-0527-7969</orcidid></search><sort><creationdate>202409</creationdate><title>COMODO: Configurable morphology distance operator</title><author>Desai, Parth ; Juneja, Namit ; Chandola, Varun ; Zola, Jaroslaw ; Wodo, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-7f56847af4c2bc8f56b19dff0dbdc07040a501e6ac801cd3c2c026319e945bff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Configurable signature functions</topic><topic>Distance operator</topic><topic>Graph</topic><topic>Morphology informatics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Parth</creatorcontrib><creatorcontrib>Juneja, Namit</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Wodo, Olga</creatorcontrib><collection>CrossRef</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Parth</au><au>Juneja, Namit</au><au>Chandola, Varun</au><au>Zola, Jaroslaw</au><au>Wodo, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMODO: Configurable morphology distance operator</atitle><jtitle>Computational materials science</jtitle><date>2024-09</date><risdate>2024</risdate><volume>244</volume><spage>113208</spage><pages>113208-</pages><artnum>113208</artnum><issn>0927-0256</issn><abstract>Data-driven approaches have been recognized as a new paradigm for establishing and exploring process-morphology-property relationships. However, typical exploration methods deliver high-dimensional morphologies that pose the challenge of extracting the key features and patterns that could guide the processing and materials design. The high dimensionality also hampers the organization of the data and the associated data analytics. As a solution, the currently available approaches either take a simplified view of the morphology, e.g., focusing on pixels in the morphology images, or apply transformations that average out structural descriptors of morphologies. To address these shortcomings, we propose a new computationally efficient and configurable distance operator that takes an intermediate approach. Our main idea is to represent the morphology as a graph where graph connectivity reflects the relative arrangement of components (e.g., grains, droplets) in the morphology, and the label of the graph vertices captures the domain-specific information of each characteristic domain. Next, given the graph abstraction, the distance between morphologies is computed using vectorized graph-based representation. Because both morphology graph structure and associated signature functions have clear interpretations, our distance measure can be easily tailored to specific applications. Our results demonstrate the superior performance of the proposed approach on data from simulation and synthetic data, including in real-world applications like morphologies clustering. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2024.113208</doi><orcidid>https://orcid.org/0009-0002-6829-6779</orcidid><orcidid>https://orcid.org/0000-0001-8990-1398</orcidid><orcidid>https://orcid.org/0009-0009-0527-7969</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2024-09, Vol.244, p.113208, Article 113208
issn 0927-0256
language eng
recordid cdi_crossref_primary_10_1016_j_commatsci_2024_113208
source ScienceDirect Freedom Collection
subjects Clustering
Configurable signature functions
Distance operator
Graph
Morphology informatics
title COMODO: Configurable morphology distance operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMODO:%20Configurable%20morphology%20distance%20operator&rft.jtitle=Computational%20materials%20science&rft.au=Desai,%20Parth&rft.date=2024-09&rft.volume=244&rft.spage=113208&rft.pages=113208-&rft.artnum=113208&rft.issn=0927-0256&rft_id=info:doi/10.1016/j.commatsci.2024.113208&rft_dat=%3Celsevier_cross%3ES0927025624004294%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-7f56847af4c2bc8f56b19dff0dbdc07040a501e6ac801cd3c2c026319e945bff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true