Loading…
Ab initio investigation on intrinsic Ga vacancies in β-Ga2O3 utilizing hybrid functional combined with the shell DFT-1/2 approach
[Display omitted] The monoclinic crystal system β-gallium oxide (β-Ga2O3) is an advantageous semiconductor, characterized by a substantial bandgap of approximately 4.8 eV, exceptional stability under ambient conditions, and transparency to ultraviolet (UV) light. In practical applications, it is cri...
Saved in:
Published in: | Computational materials science 2025-02, Vol.249, p.113607, Article 113607 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The monoclinic crystal system β-gallium oxide (β-Ga2O3) is an advantageous semiconductor, characterized by a substantial bandgap of approximately 4.8 eV, exceptional stability under ambient conditions, and transparency to ultraviolet (UV) light. In practical applications, it is critical to effectively manage defects within β-Ga2O3. Failure to rigorously control defect types and concentrations can significantly compromise device stability and reliability. Among the prevalent and impactful defects, Ga intrinsic vacancies notably affect the optoelectronic performance of β-Ga2O3, yet they have not been comprehensively studied using suitable generalized approximations. This paper systematically examines the electronic and optical properties of β-Ga2O3 with intrinsic Ga vacancies using hybrid functional methods combined with the shell DFT-1/2 approach. Key properties analyzed include electronic bandgap and density of states, structural properties like elastic constants and phonon dispersion, and optoelectronic properties such as permittivity, absorption spectra, and electronic energy-loss spectra. Detailed discussion is provided on the formation energy curves of these Ga intrinsic defects. |
---|---|
ISSN: | 0927-0256 |
DOI: | 10.1016/j.commatsci.2024.113607 |