Loading…

A joint strategy for service deployment and task offloading in satellite–terrestrial IoT

In recent years, low earth orbit satellite constellations, which are an important component of 6G, have been considered as a potential solution to achieve seamless network services for remote areas. Service deployment based on network function virtualization (NFV) has become an essential trend among...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2023-04, Vol.225, p.109656, Article 109656
Main Authors: Sun, Jiayu, Wang, Huiqiang, Nie, Lili, Feng, Guangsheng, Zhang, Zhibo, Liu, Jingyao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3
cites cdi_FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3
container_end_page
container_issue
container_start_page 109656
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 225
creator Sun, Jiayu
Wang, Huiqiang
Nie, Lili
Feng, Guangsheng
Zhang, Zhibo
Liu, Jingyao
description In recent years, low earth orbit satellite constellations, which are an important component of 6G, have been considered as a potential solution to achieve seamless network services for remote areas. Service deployment based on network function virtualization (NFV) has become an essential trend among satellite networks to enable flexible network services. However, current satellite–terrestrial IoT task offloading schemes rarely consider NFV-based satellite service deployment, which limits the performance of satellite networks. In this study, we address this problem by proposing an optimization problem that jointly considers service deployment and task offloading. To solve such a problem with many coupling decision variables, we decouple the problem using a two-stage approach. We propose a deep reinforcement learning-based service deployment policy to solve the service deployment subproblem and an alternating direction multiplier method-based distributed approach to solve the task offloading subproblem, which with the aim of minimizing the task latency and energy consumption of IoT devices. Simulation experiments demonstrate that our scheme can obtain near-optimal solution and can be adapted to large-scale satellite–terrestrial IoT network scenarios.
doi_str_mv 10.1016/j.comnet.2023.109656
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_comnet_2023_109656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128623001019</els_id><sourcerecordid>S1389128623001019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3</originalsourceid><addsrcrecordid>eNp9kE1qwzAQhUVpoWnaG3ShC9iVLEuyN4UQ-hMIdJNuuhGKNA5yHStIIpBd79Ab9iRVcNddzTDDe7z3IXRPSUkJFQ99afx-hFRWpGL51AouLtCMNrIqJBHtZd5Z0xa0asQ1uomxJ4TUddXM0McC996NCccUdILdCXc-4Ajh6AxgC4fBn_aQ_3q0OOn4iX3XDV5bN-6wG3HMomFwCX6-vhOEANnH6QGv_OYWXXV6iHD3N-fo_flps3wt1m8vq-ViXRhGRCq41Z3hHFrN6dYwXlcaOBGaCmOFhMZKkbO3HGrZclPnOoJpLZmRsrZbatgc1ZOvCT7GAJ06BLfX4aQoUWc-qlcTH3XmoyY-WfY4ySBnOzoIKhoHowHrApikrHf_G_wCjf5y1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A joint strategy for service deployment and task offloading in satellite–terrestrial IoT</title><source>Elsevier</source><creator>Sun, Jiayu ; Wang, Huiqiang ; Nie, Lili ; Feng, Guangsheng ; Zhang, Zhibo ; Liu, Jingyao</creator><creatorcontrib>Sun, Jiayu ; Wang, Huiqiang ; Nie, Lili ; Feng, Guangsheng ; Zhang, Zhibo ; Liu, Jingyao</creatorcontrib><description>In recent years, low earth orbit satellite constellations, which are an important component of 6G, have been considered as a potential solution to achieve seamless network services for remote areas. Service deployment based on network function virtualization (NFV) has become an essential trend among satellite networks to enable flexible network services. However, current satellite–terrestrial IoT task offloading schemes rarely consider NFV-based satellite service deployment, which limits the performance of satellite networks. In this study, we address this problem by proposing an optimization problem that jointly considers service deployment and task offloading. To solve such a problem with many coupling decision variables, we decouple the problem using a two-stage approach. We propose a deep reinforcement learning-based service deployment policy to solve the service deployment subproblem and an alternating direction multiplier method-based distributed approach to solve the task offloading subproblem, which with the aim of minimizing the task latency and energy consumption of IoT devices. Simulation experiments demonstrate that our scheme can obtain near-optimal solution and can be adapted to large-scale satellite–terrestrial IoT network scenarios.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2023.109656</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Satellite–terrestrial IoT ; Service deployment ; Task offloading</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2023-04, Vol.225, p.109656, Article 109656</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3</citedby><cites>FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3</cites><orcidid>0000-0001-5530-8465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jiayu</creatorcontrib><creatorcontrib>Wang, Huiqiang</creatorcontrib><creatorcontrib>Nie, Lili</creatorcontrib><creatorcontrib>Feng, Guangsheng</creatorcontrib><creatorcontrib>Zhang, Zhibo</creatorcontrib><creatorcontrib>Liu, Jingyao</creatorcontrib><title>A joint strategy for service deployment and task offloading in satellite–terrestrial IoT</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>In recent years, low earth orbit satellite constellations, which are an important component of 6G, have been considered as a potential solution to achieve seamless network services for remote areas. Service deployment based on network function virtualization (NFV) has become an essential trend among satellite networks to enable flexible network services. However, current satellite–terrestrial IoT task offloading schemes rarely consider NFV-based satellite service deployment, which limits the performance of satellite networks. In this study, we address this problem by proposing an optimization problem that jointly considers service deployment and task offloading. To solve such a problem with many coupling decision variables, we decouple the problem using a two-stage approach. We propose a deep reinforcement learning-based service deployment policy to solve the service deployment subproblem and an alternating direction multiplier method-based distributed approach to solve the task offloading subproblem, which with the aim of minimizing the task latency and energy consumption of IoT devices. Simulation experiments demonstrate that our scheme can obtain near-optimal solution and can be adapted to large-scale satellite–terrestrial IoT network scenarios.</description><subject>Satellite–terrestrial IoT</subject><subject>Service deployment</subject><subject>Task offloading</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qwzAQhUVpoWnaG3ShC9iVLEuyN4UQ-hMIdJNuuhGKNA5yHStIIpBd79Ab9iRVcNddzTDDe7z3IXRPSUkJFQ99afx-hFRWpGL51AouLtCMNrIqJBHtZd5Z0xa0asQ1uomxJ4TUddXM0McC996NCccUdILdCXc-4Ajh6AxgC4fBn_aQ_3q0OOn4iX3XDV5bN-6wG3HMomFwCX6-vhOEANnH6QGv_OYWXXV6iHD3N-fo_flps3wt1m8vq-ViXRhGRCq41Z3hHFrN6dYwXlcaOBGaCmOFhMZKkbO3HGrZclPnOoJpLZmRsrZbatgc1ZOvCT7GAJ06BLfX4aQoUWc-qlcTH3XmoyY-WfY4ySBnOzoIKhoHowHrApikrHf_G_wCjf5y1g</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sun, Jiayu</creator><creator>Wang, Huiqiang</creator><creator>Nie, Lili</creator><creator>Feng, Guangsheng</creator><creator>Zhang, Zhibo</creator><creator>Liu, Jingyao</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5530-8465</orcidid></search><sort><creationdate>202304</creationdate><title>A joint strategy for service deployment and task offloading in satellite–terrestrial IoT</title><author>Sun, Jiayu ; Wang, Huiqiang ; Nie, Lili ; Feng, Guangsheng ; Zhang, Zhibo ; Liu, Jingyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Satellite–terrestrial IoT</topic><topic>Service deployment</topic><topic>Task offloading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jiayu</creatorcontrib><creatorcontrib>Wang, Huiqiang</creatorcontrib><creatorcontrib>Nie, Lili</creatorcontrib><creatorcontrib>Feng, Guangsheng</creatorcontrib><creatorcontrib>Zhang, Zhibo</creatorcontrib><creatorcontrib>Liu, Jingyao</creatorcontrib><collection>CrossRef</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jiayu</au><au>Wang, Huiqiang</au><au>Nie, Lili</au><au>Feng, Guangsheng</au><au>Zhang, Zhibo</au><au>Liu, Jingyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A joint strategy for service deployment and task offloading in satellite–terrestrial IoT</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2023-04</date><risdate>2023</risdate><volume>225</volume><spage>109656</spage><pages>109656-</pages><artnum>109656</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>In recent years, low earth orbit satellite constellations, which are an important component of 6G, have been considered as a potential solution to achieve seamless network services for remote areas. Service deployment based on network function virtualization (NFV) has become an essential trend among satellite networks to enable flexible network services. However, current satellite–terrestrial IoT task offloading schemes rarely consider NFV-based satellite service deployment, which limits the performance of satellite networks. In this study, we address this problem by proposing an optimization problem that jointly considers service deployment and task offloading. To solve such a problem with many coupling decision variables, we decouple the problem using a two-stage approach. We propose a deep reinforcement learning-based service deployment policy to solve the service deployment subproblem and an alternating direction multiplier method-based distributed approach to solve the task offloading subproblem, which with the aim of minimizing the task latency and energy consumption of IoT devices. Simulation experiments demonstrate that our scheme can obtain near-optimal solution and can be adapted to large-scale satellite–terrestrial IoT network scenarios.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2023.109656</doi><orcidid>https://orcid.org/0000-0001-5530-8465</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2023-04, Vol.225, p.109656, Article 109656
issn 1389-1286
1872-7069
language eng
recordid cdi_crossref_primary_10_1016_j_comnet_2023_109656
source Elsevier
subjects Satellite–terrestrial IoT
Service deployment
Task offloading
title A joint strategy for service deployment and task offloading in satellite–terrestrial IoT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20joint%20strategy%20for%20service%20deployment%20and%20task%20offloading%20in%20satellite%E2%80%93terrestrial%20IoT&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Sun,%20Jiayu&rft.date=2023-04&rft.volume=225&rft.spage=109656&rft.pages=109656-&rft.artnum=109656&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2023.109656&rft_dat=%3Celsevier_cross%3ES1389128623001019%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-5dafc55e9a51bc3542ae506a16cd67e8d7638995e4795c406963aa73c774db1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true