Loading…

Multi-objective joint optimization of task offloading based on MADRL in internet of things assisted by satellite networks

The Internet of Things (IoT) integrates a large number of heterogeneous terminals and systems, possessing ubiquitous sensing and computing capabilities. Satellite networks are the crucial supplement to terrestrial networks, particularly in remote areas where network infrastructures are sparingly dis...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2024-12, Vol.254, p.110801, Article 110801
Main Authors: Wang, Houpeng, Cao, Suzhi, Li, Huanjing, Yan, Lei, Guo, Zhonglin, Gao, Yu’e
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185t-16de6e37c41bf9e1b8cb75f9ccea4b05b2a6a4f37794ea3172ee31836df44e883
container_end_page
container_issue
container_start_page 110801
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 254
creator Wang, Houpeng
Cao, Suzhi
Li, Huanjing
Yan, Lei
Guo, Zhonglin
Gao, Yu’e
description The Internet of Things (IoT) integrates a large number of heterogeneous terminals and systems, possessing ubiquitous sensing and computing capabilities. Satellite networks are the crucial supplement to terrestrial networks, particularly in remote areas where network infrastructures are sparingly distributed or unavailable. Combining edge computing with satellite networks provides on-orbit computing capabilities for IoT applications, reducing service delay and enhancing service quality. Due to the resource constraints of satellites, achieving collaborative services through task offloading among multiple satellites becomes essential. Both the privacy leakage risk arising from frequent data interactions and the load imbalance resulting from offloading preferences cannot be overlooked. The key challenge of task offloading is to safeguard the privacy of offloaded data and ensure the system’s load balance while minimizing the delay and energy consumption. In this paper, the task offloading problem is formulated as a Partially Observable Markov Decision Process (POMDP), and a task offloading algorithm based on multi-objective joint optimization using multi-agent deep reinforcement learning in a distributed architecture is proposed. The simulation results validate the efficacy of our model and algorithm, demonstrating that our proposed algorithm achieves better performance in minimizing comprehensive offloading costs. •Three-layer offloading framework allows tasks offload to four neighboring satellites.•Offloading problem reckons four factors, including privacy entropy and load balance.•The decentralized critics and decentralized actors pattern based on MADRL algorithm.
doi_str_mv 10.1016/j.comnet.2024.110801
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_comnet_2024_110801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128624006339</els_id><sourcerecordid>S1389128624006339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-16de6e37c41bf9e1b8cb75f9ccea4b05b2a6a4f37794ea3172ee31836df44e883</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AiVJ4Aw5-gQQ7cRPnglSVX6kVEoKzZTtrcJrGlW2KwtPjEs5IK81hZ2ZXH0JXlOSU0Oq6y7XbDRDzghQsp5RwQk_QjJa8yWjBqzN0HkJHCGGs4DM0bj77aDOnOtDRHgB3zg4Ru320O_sto3UDdgZHGbZJTe9ka4d3rGSAFqfdZnn7ssZ2SBPBp7u_7o_kCViGYENMPjXiICP0vY2Ak-fL-W24QKdG9gEu_3SO3u7vXleP2fr54Wm1XGea8kXMaNVCBWWtGVWmAaq4VvXCNFqDZIosVCEryUxZ1w0DWdK6ACgpL6vWMAacl3PEpl7tXQgejNh7u5N-FJSIIzLRiQmZOCITE7IUu5likH47WPAiaAuDhtb6hEq0zv5f8ANj9Xvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-objective joint optimization of task offloading based on MADRL in internet of things assisted by satellite networks</title><source>ScienceDirect Journals</source><creator>Wang, Houpeng ; Cao, Suzhi ; Li, Huanjing ; Yan, Lei ; Guo, Zhonglin ; Gao, Yu’e</creator><creatorcontrib>Wang, Houpeng ; Cao, Suzhi ; Li, Huanjing ; Yan, Lei ; Guo, Zhonglin ; Gao, Yu’e</creatorcontrib><description>The Internet of Things (IoT) integrates a large number of heterogeneous terminals and systems, possessing ubiquitous sensing and computing capabilities. Satellite networks are the crucial supplement to terrestrial networks, particularly in remote areas where network infrastructures are sparingly distributed or unavailable. Combining edge computing with satellite networks provides on-orbit computing capabilities for IoT applications, reducing service delay and enhancing service quality. Due to the resource constraints of satellites, achieving collaborative services through task offloading among multiple satellites becomes essential. Both the privacy leakage risk arising from frequent data interactions and the load imbalance resulting from offloading preferences cannot be overlooked. The key challenge of task offloading is to safeguard the privacy of offloaded data and ensure the system’s load balance while minimizing the delay and energy consumption. In this paper, the task offloading problem is formulated as a Partially Observable Markov Decision Process (POMDP), and a task offloading algorithm based on multi-objective joint optimization using multi-agent deep reinforcement learning in a distributed architecture is proposed. The simulation results validate the efficacy of our model and algorithm, demonstrating that our proposed algorithm achieves better performance in minimizing comprehensive offloading costs. •Three-layer offloading framework allows tasks offload to four neighboring satellites.•Offloading problem reckons four factors, including privacy entropy and load balance.•The decentralized critics and decentralized actors pattern based on MADRL algorithm.</description><identifier>ISSN: 1389-1286</identifier><identifier>DOI: 10.1016/j.comnet.2024.110801</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Mobile edge computing ; Multi-agent DRL ; Multi-objective joint optimization ; Satellite network ; Task offloading</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2024-12, Vol.254, p.110801, Article 110801</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-16de6e37c41bf9e1b8cb75f9ccea4b05b2a6a4f37794ea3172ee31836df44e883</cites><orcidid>0009-0007-6631-6541 ; 0000-0002-1872-3376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Houpeng</creatorcontrib><creatorcontrib>Cao, Suzhi</creatorcontrib><creatorcontrib>Li, Huanjing</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Guo, Zhonglin</creatorcontrib><creatorcontrib>Gao, Yu’e</creatorcontrib><title>Multi-objective joint optimization of task offloading based on MADRL in internet of things assisted by satellite networks</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>The Internet of Things (IoT) integrates a large number of heterogeneous terminals and systems, possessing ubiquitous sensing and computing capabilities. Satellite networks are the crucial supplement to terrestrial networks, particularly in remote areas where network infrastructures are sparingly distributed or unavailable. Combining edge computing with satellite networks provides on-orbit computing capabilities for IoT applications, reducing service delay and enhancing service quality. Due to the resource constraints of satellites, achieving collaborative services through task offloading among multiple satellites becomes essential. Both the privacy leakage risk arising from frequent data interactions and the load imbalance resulting from offloading preferences cannot be overlooked. The key challenge of task offloading is to safeguard the privacy of offloaded data and ensure the system’s load balance while minimizing the delay and energy consumption. In this paper, the task offloading problem is formulated as a Partially Observable Markov Decision Process (POMDP), and a task offloading algorithm based on multi-objective joint optimization using multi-agent deep reinforcement learning in a distributed architecture is proposed. The simulation results validate the efficacy of our model and algorithm, demonstrating that our proposed algorithm achieves better performance in minimizing comprehensive offloading costs. •Three-layer offloading framework allows tasks offload to four neighboring satellites.•Offloading problem reckons four factors, including privacy entropy and load balance.•The decentralized critics and decentralized actors pattern based on MADRL algorithm.</description><subject>Mobile edge computing</subject><subject>Multi-agent DRL</subject><subject>Multi-objective joint optimization</subject><subject>Satellite network</subject><subject>Task offloading</subject><issn>1389-1286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AiVJ4Aw5-gQQ7cRPnglSVX6kVEoKzZTtrcJrGlW2KwtPjEs5IK81hZ2ZXH0JXlOSU0Oq6y7XbDRDzghQsp5RwQk_QjJa8yWjBqzN0HkJHCGGs4DM0bj77aDOnOtDRHgB3zg4Ru320O_sto3UDdgZHGbZJTe9ka4d3rGSAFqfdZnn7ssZ2SBPBp7u_7o_kCViGYENMPjXiICP0vY2Ak-fL-W24QKdG9gEu_3SO3u7vXleP2fr54Wm1XGea8kXMaNVCBWWtGVWmAaq4VvXCNFqDZIosVCEryUxZ1w0DWdK6ACgpL6vWMAacl3PEpl7tXQgejNh7u5N-FJSIIzLRiQmZOCITE7IUu5likH47WPAiaAuDhtb6hEq0zv5f8ANj9Xvx</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Houpeng</creator><creator>Cao, Suzhi</creator><creator>Li, Huanjing</creator><creator>Yan, Lei</creator><creator>Guo, Zhonglin</creator><creator>Gao, Yu’e</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0007-6631-6541</orcidid><orcidid>https://orcid.org/0000-0002-1872-3376</orcidid></search><sort><creationdate>202412</creationdate><title>Multi-objective joint optimization of task offloading based on MADRL in internet of things assisted by satellite networks</title><author>Wang, Houpeng ; Cao, Suzhi ; Li, Huanjing ; Yan, Lei ; Guo, Zhonglin ; Gao, Yu’e</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-16de6e37c41bf9e1b8cb75f9ccea4b05b2a6a4f37794ea3172ee31836df44e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mobile edge computing</topic><topic>Multi-agent DRL</topic><topic>Multi-objective joint optimization</topic><topic>Satellite network</topic><topic>Task offloading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Houpeng</creatorcontrib><creatorcontrib>Cao, Suzhi</creatorcontrib><creatorcontrib>Li, Huanjing</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Guo, Zhonglin</creatorcontrib><creatorcontrib>Gao, Yu’e</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Houpeng</au><au>Cao, Suzhi</au><au>Li, Huanjing</au><au>Yan, Lei</au><au>Guo, Zhonglin</au><au>Gao, Yu’e</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective joint optimization of task offloading based on MADRL in internet of things assisted by satellite networks</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>254</volume><spage>110801</spage><pages>110801-</pages><artnum>110801</artnum><issn>1389-1286</issn><abstract>The Internet of Things (IoT) integrates a large number of heterogeneous terminals and systems, possessing ubiquitous sensing and computing capabilities. Satellite networks are the crucial supplement to terrestrial networks, particularly in remote areas where network infrastructures are sparingly distributed or unavailable. Combining edge computing with satellite networks provides on-orbit computing capabilities for IoT applications, reducing service delay and enhancing service quality. Due to the resource constraints of satellites, achieving collaborative services through task offloading among multiple satellites becomes essential. Both the privacy leakage risk arising from frequent data interactions and the load imbalance resulting from offloading preferences cannot be overlooked. The key challenge of task offloading is to safeguard the privacy of offloaded data and ensure the system’s load balance while minimizing the delay and energy consumption. In this paper, the task offloading problem is formulated as a Partially Observable Markov Decision Process (POMDP), and a task offloading algorithm based on multi-objective joint optimization using multi-agent deep reinforcement learning in a distributed architecture is proposed. The simulation results validate the efficacy of our model and algorithm, demonstrating that our proposed algorithm achieves better performance in minimizing comprehensive offloading costs. •Three-layer offloading framework allows tasks offload to four neighboring satellites.•Offloading problem reckons four factors, including privacy entropy and load balance.•The decentralized critics and decentralized actors pattern based on MADRL algorithm.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2024.110801</doi><orcidid>https://orcid.org/0009-0007-6631-6541</orcidid><orcidid>https://orcid.org/0000-0002-1872-3376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2024-12, Vol.254, p.110801, Article 110801
issn 1389-1286
language eng
recordid cdi_crossref_primary_10_1016_j_comnet_2024_110801
source ScienceDirect Journals
subjects Mobile edge computing
Multi-agent DRL
Multi-objective joint optimization
Satellite network
Task offloading
title Multi-objective joint optimization of task offloading based on MADRL in internet of things assisted by satellite networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20joint%20optimization%20of%20task%20offloading%20based%20on%20MADRL%20in%20internet%20of%20things%20assisted%20by%20satellite%20networks&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Wang,%20Houpeng&rft.date=2024-12&rft.volume=254&rft.spage=110801&rft.pages=110801-&rft.artnum=110801&rft.issn=1389-1286&rft_id=info:doi/10.1016/j.comnet.2024.110801&rft_dat=%3Celsevier_cross%3ES1389128624006339%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-16de6e37c41bf9e1b8cb75f9ccea4b05b2a6a4f37794ea3172ee31836df44e883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true