Loading…

Efficient extraction of corn rows in diverse scenarios: A grid-based selection method for intelligent classification

•Improving anchor-based crop row detection methods.•Accurate extraction of navigation regions.•While maintaining high-precision detection, it achieves outstanding detection speed.•Capable of effectively addressing various special scenarios.•Provides a reliable method for field autonomous driving. In...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2024-03, Vol.218, p.108759, Article 108759
Main Authors: Quan, Longzhe, Guo, Zhiming, Huang, Lili, Xue, Yi, Sun, Deng, Chen, Tianbao, Geng, Tianyu, Shi, Jianze, Hou, Pengbiao, He, Jinbin, Lou, Zhaoxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673
cites cdi_FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673
container_end_page
container_issue
container_start_page 108759
container_title Computers and electronics in agriculture
container_volume 218
creator Quan, Longzhe
Guo, Zhiming
Huang, Lili
Xue, Yi
Sun, Deng
Chen, Tianbao
Geng, Tianyu
Shi, Jianze
Hou, Pengbiao
He, Jinbin
Lou, Zhaoxia
description •Improving anchor-based crop row detection methods.•Accurate extraction of navigation regions.•While maintaining high-precision detection, it achieves outstanding detection speed.•Capable of effectively addressing various special scenarios.•Provides a reliable method for field autonomous driving. In various complex field environments, machine learning-based crop row detection faces challenges like rigidity and low adaptability. To address this issue, we integrated deep learning into agricultural analysis and established a diverse dataset of corn fields across various scenarios. By employing an end-to-end CNN model and predicting row and column anchors, we created a grid-like understanding of images, significantly streamlining the crop row detection process without the need for pixel-level segmentation. This innovative approach offers a novel method for comprehending the spatial structure of crop rows. Furthermore, we extended the concept of agricultural machinery movement core areas to our data annotation strategy, eliminating the need for pre-selecting ROI regions during crop row extraction. Experimental results demonstrate that our Row and Column Anchor Selection Classification (RCASC) method surpasses conventional approaches in terms of versatility, achieving an F1 score of 92.6 %. It can autonomously extract agricultural machinery movement areas, with video stream processing frame rates exceeding 100FPS and an average image processing time of approximately 10 ms. This method not only meets the real-time requirements for corn crop row recognition but also operates effectively in various special scenarios, offering a feasible solution for further advancing agricultural automation and precision.
doi_str_mv 10.1016/j.compag.2024.108759
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compag_2024_108759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169924001509</els_id><sourcerecordid>S0168169924001509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673</originalsourceid><addsrcrecordid>eNp9kM9OAyEQxonRxFp9Aw-8wFZYWGA9mDSN_5ImXvRMWBgqzXZpYFP17WWznj1NZvJ938z8ELqlZEUJFXf7lY2Ho9mtalLzMlKyac_QgipZV5ISeY4WRaYqKtr2El3lvCelb5VcoPHR-2ADDCOG7zEZO4Y44OixjWnAKX5lHAbswglSBpwtDCaFmO_xGu9ScFVnMjicoYfZeYDxMzrsYyq-Efo-7KZs25ucQ9lkJtU1uvCmz3DzV5fo4-nxffNSbd-eXzfrbWUZEWPFuYJOAWfQeu5cWwupTEOt7VjHGsdrC7Ug0ghGGt414BVpWS15Y7nkVEi2RHzOtSnmnMDrYwoHk340JXoip_d6JqcncnomV2wPsw3KbacASeeJkAUXUnlTuxj-D_gFMhp69g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient extraction of corn rows in diverse scenarios: A grid-based selection method for intelligent classification</title><source>ScienceDirect Freedom Collection</source><creator>Quan, Longzhe ; Guo, Zhiming ; Huang, Lili ; Xue, Yi ; Sun, Deng ; Chen, Tianbao ; Geng, Tianyu ; Shi, Jianze ; Hou, Pengbiao ; He, Jinbin ; Lou, Zhaoxia</creator><creatorcontrib>Quan, Longzhe ; Guo, Zhiming ; Huang, Lili ; Xue, Yi ; Sun, Deng ; Chen, Tianbao ; Geng, Tianyu ; Shi, Jianze ; Hou, Pengbiao ; He, Jinbin ; Lou, Zhaoxia</creatorcontrib><description>•Improving anchor-based crop row detection methods.•Accurate extraction of navigation regions.•While maintaining high-precision detection, it achieves outstanding detection speed.•Capable of effectively addressing various special scenarios.•Provides a reliable method for field autonomous driving. In various complex field environments, machine learning-based crop row detection faces challenges like rigidity and low adaptability. To address this issue, we integrated deep learning into agricultural analysis and established a diverse dataset of corn fields across various scenarios. By employing an end-to-end CNN model and predicting row and column anchors, we created a grid-like understanding of images, significantly streamlining the crop row detection process without the need for pixel-level segmentation. This innovative approach offers a novel method for comprehending the spatial structure of crop rows. Furthermore, we extended the concept of agricultural machinery movement core areas to our data annotation strategy, eliminating the need for pre-selecting ROI regions during crop row extraction. Experimental results demonstrate that our Row and Column Anchor Selection Classification (RCASC) method surpasses conventional approaches in terms of versatility, achieving an F1 score of 92.6 %. It can autonomously extract agricultural machinery movement areas, with video stream processing frame rates exceeding 100FPS and an average image processing time of approximately 10 ms. This method not only meets the real-time requirements for corn crop row recognition but also operates effectively in various special scenarios, offering a feasible solution for further advancing agricultural automation and precision.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2024.108759</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep Learning ; Early corn crops ; Image classification ; Maize crop row detection ; Visual navigation</subject><ispartof>Computers and electronics in agriculture, 2024-03, Vol.218, p.108759, Article 108759</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673</citedby><cites>FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673</cites><orcidid>0000-0002-6391-0365 ; 0009-0009-2451-3285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Quan, Longzhe</creatorcontrib><creatorcontrib>Guo, Zhiming</creatorcontrib><creatorcontrib>Huang, Lili</creatorcontrib><creatorcontrib>Xue, Yi</creatorcontrib><creatorcontrib>Sun, Deng</creatorcontrib><creatorcontrib>Chen, Tianbao</creatorcontrib><creatorcontrib>Geng, Tianyu</creatorcontrib><creatorcontrib>Shi, Jianze</creatorcontrib><creatorcontrib>Hou, Pengbiao</creatorcontrib><creatorcontrib>He, Jinbin</creatorcontrib><creatorcontrib>Lou, Zhaoxia</creatorcontrib><title>Efficient extraction of corn rows in diverse scenarios: A grid-based selection method for intelligent classification</title><title>Computers and electronics in agriculture</title><description>•Improving anchor-based crop row detection methods.•Accurate extraction of navigation regions.•While maintaining high-precision detection, it achieves outstanding detection speed.•Capable of effectively addressing various special scenarios.•Provides a reliable method for field autonomous driving. In various complex field environments, machine learning-based crop row detection faces challenges like rigidity and low adaptability. To address this issue, we integrated deep learning into agricultural analysis and established a diverse dataset of corn fields across various scenarios. By employing an end-to-end CNN model and predicting row and column anchors, we created a grid-like understanding of images, significantly streamlining the crop row detection process without the need for pixel-level segmentation. This innovative approach offers a novel method for comprehending the spatial structure of crop rows. Furthermore, we extended the concept of agricultural machinery movement core areas to our data annotation strategy, eliminating the need for pre-selecting ROI regions during crop row extraction. Experimental results demonstrate that our Row and Column Anchor Selection Classification (RCASC) method surpasses conventional approaches in terms of versatility, achieving an F1 score of 92.6 %. It can autonomously extract agricultural machinery movement areas, with video stream processing frame rates exceeding 100FPS and an average image processing time of approximately 10 ms. This method not only meets the real-time requirements for corn crop row recognition but also operates effectively in various special scenarios, offering a feasible solution for further advancing agricultural automation and precision.</description><subject>Deep Learning</subject><subject>Early corn crops</subject><subject>Image classification</subject><subject>Maize crop row detection</subject><subject>Visual navigation</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAyEQxonRxFp9Aw-8wFZYWGA9mDSN_5ImXvRMWBgqzXZpYFP17WWznj1NZvJ938z8ELqlZEUJFXf7lY2Ho9mtalLzMlKyac_QgipZV5ISeY4WRaYqKtr2El3lvCelb5VcoPHR-2ADDCOG7zEZO4Y44OixjWnAKX5lHAbswglSBpwtDCaFmO_xGu9ScFVnMjicoYfZeYDxMzrsYyq-Efo-7KZs25ucQ9lkJtU1uvCmz3DzV5fo4-nxffNSbd-eXzfrbWUZEWPFuYJOAWfQeu5cWwupTEOt7VjHGsdrC7Ug0ghGGt414BVpWS15Y7nkVEi2RHzOtSnmnMDrYwoHk340JXoip_d6JqcncnomV2wPsw3KbacASeeJkAUXUnlTuxj-D_gFMhp69g</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Quan, Longzhe</creator><creator>Guo, Zhiming</creator><creator>Huang, Lili</creator><creator>Xue, Yi</creator><creator>Sun, Deng</creator><creator>Chen, Tianbao</creator><creator>Geng, Tianyu</creator><creator>Shi, Jianze</creator><creator>Hou, Pengbiao</creator><creator>He, Jinbin</creator><creator>Lou, Zhaoxia</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6391-0365</orcidid><orcidid>https://orcid.org/0009-0009-2451-3285</orcidid></search><sort><creationdate>202403</creationdate><title>Efficient extraction of corn rows in diverse scenarios: A grid-based selection method for intelligent classification</title><author>Quan, Longzhe ; Guo, Zhiming ; Huang, Lili ; Xue, Yi ; Sun, Deng ; Chen, Tianbao ; Geng, Tianyu ; Shi, Jianze ; Hou, Pengbiao ; He, Jinbin ; Lou, Zhaoxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep Learning</topic><topic>Early corn crops</topic><topic>Image classification</topic><topic>Maize crop row detection</topic><topic>Visual navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Longzhe</creatorcontrib><creatorcontrib>Guo, Zhiming</creatorcontrib><creatorcontrib>Huang, Lili</creatorcontrib><creatorcontrib>Xue, Yi</creatorcontrib><creatorcontrib>Sun, Deng</creatorcontrib><creatorcontrib>Chen, Tianbao</creatorcontrib><creatorcontrib>Geng, Tianyu</creatorcontrib><creatorcontrib>Shi, Jianze</creatorcontrib><creatorcontrib>Hou, Pengbiao</creatorcontrib><creatorcontrib>He, Jinbin</creatorcontrib><creatorcontrib>Lou, Zhaoxia</creatorcontrib><collection>CrossRef</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Longzhe</au><au>Guo, Zhiming</au><au>Huang, Lili</au><au>Xue, Yi</au><au>Sun, Deng</au><au>Chen, Tianbao</au><au>Geng, Tianyu</au><au>Shi, Jianze</au><au>Hou, Pengbiao</au><au>He, Jinbin</au><au>Lou, Zhaoxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient extraction of corn rows in diverse scenarios: A grid-based selection method for intelligent classification</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2024-03</date><risdate>2024</risdate><volume>218</volume><spage>108759</spage><pages>108759-</pages><artnum>108759</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Improving anchor-based crop row detection methods.•Accurate extraction of navigation regions.•While maintaining high-precision detection, it achieves outstanding detection speed.•Capable of effectively addressing various special scenarios.•Provides a reliable method for field autonomous driving. In various complex field environments, machine learning-based crop row detection faces challenges like rigidity and low adaptability. To address this issue, we integrated deep learning into agricultural analysis and established a diverse dataset of corn fields across various scenarios. By employing an end-to-end CNN model and predicting row and column anchors, we created a grid-like understanding of images, significantly streamlining the crop row detection process without the need for pixel-level segmentation. This innovative approach offers a novel method for comprehending the spatial structure of crop rows. Furthermore, we extended the concept of agricultural machinery movement core areas to our data annotation strategy, eliminating the need for pre-selecting ROI regions during crop row extraction. Experimental results demonstrate that our Row and Column Anchor Selection Classification (RCASC) method surpasses conventional approaches in terms of versatility, achieving an F1 score of 92.6 %. It can autonomously extract agricultural machinery movement areas, with video stream processing frame rates exceeding 100FPS and an average image processing time of approximately 10 ms. This method not only meets the real-time requirements for corn crop row recognition but also operates effectively in various special scenarios, offering a feasible solution for further advancing agricultural automation and precision.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2024.108759</doi><orcidid>https://orcid.org/0000-0002-6391-0365</orcidid><orcidid>https://orcid.org/0009-0009-2451-3285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2024-03, Vol.218, p.108759, Article 108759
issn 0168-1699
1872-7107
language eng
recordid cdi_crossref_primary_10_1016_j_compag_2024_108759
source ScienceDirect Freedom Collection
subjects Deep Learning
Early corn crops
Image classification
Maize crop row detection
Visual navigation
title Efficient extraction of corn rows in diverse scenarios: A grid-based selection method for intelligent classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20extraction%20of%20corn%20rows%20in%20diverse%20scenarios:%20A%20grid-based%20selection%20method%20for%20intelligent%20classification&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Quan,%20Longzhe&rft.date=2024-03&rft.volume=218&rft.spage=108759&rft.pages=108759-&rft.artnum=108759&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2024.108759&rft_dat=%3Celsevier_cross%3ES0168169924001509%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-448eb8e43e9f4dd92678a51ccb3b35d42ce2607a63054b5ef80932745c4741673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true