Loading…

Dynamic modeling and validation of 2-ethyl-hexenal hydrogenation process

The paper evaluates, by modeling and simulation, 2-ethyl-hexenal hydrogenation process in catalytic trickle bed three-phase reactors. The mathematical model consists of balance equations for gas and liquid phases. Reaction rate equations, transport models and mass balances were coupled to generalize...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering 2013-05, Vol.52, p.100-111
Main Authors: Both, Roxana, Cormos, Ana-Maria, Agachi, Paul-Serban, Festila, Clement
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper evaluates, by modeling and simulation, 2-ethyl-hexenal hydrogenation process in catalytic trickle bed three-phase reactors. The mathematical model consists of balance equations for gas and liquid phases. Reaction rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for partial differential equations. The importance of mass transfer resistance inside the catalyst pellets as well as the dynamics of the different phases being present in the reactor is revealed. The dynamic mathematical model presented can be used to analyze and understand the interaction of various processes that take place inside the hydrogenation reactor and also to make preliminary calculation of experimental parameters. Another important use of the mathematical model is to determine the optimal operation conditions and to design the control system. The model is implemented in Matlab and tested in simulations achieving successful results.
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2012.11.012