Loading…

Wavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices

•Generic reduced-space scheduling problem with time-variable electricity prices.•Linear mapping procedure assigning one degree of freedom to multiple time intervals.•Wavelet-based analysis of previous solution to iteratively refine the assignment.•Balance between improved objective values and reduce...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering 2020-01, Vol.132, p.106598, Article 106598
Main Authors: Schäfer, Pascal, Schweidtmann, Artur M., Lenz, Philipp H.A., Markgraf, Hannah M.C., Mitsos, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Generic reduced-space scheduling problem with time-variable electricity prices.•Linear mapping procedure assigning one degree of freedom to multiple time intervals.•Wavelet-based analysis of previous solution to iteratively refine the assignment.•Balance between improved objective values and reduced dimensionalities.•Feasible near-optimal solutions furnished within short time. [Display omitted] Using nonlinear process models in discrete-time scheduling typically prohibits long planning horizons with fine temporal discretizations. Therefore, we propose an adaptive grid algorithm tailored for scheduling subject to time-variable electricity prices. The scheduling problem is formulated in a reduced space. In the algorithm, the number of degrees of freedom is reduced by linearly mapping one degree of freedom to multiple intervals with similar electricity prices. The mapping is iteratively refined using a wavelet-based analysis of the previous solution. We apply the algorithm to the scheduling of a compressed air energy storage. We model the efficiency characteristics of the turbo machinery using artificial neural networks. Using our in-house global solver MAiNGO, the algorithm identifies a feasible near-optimal solution with  
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2019.106598