Loading…

Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation

•Wavelet transforms are more performant than other signal processing approaches.•Tested approaches include: KF, STFT and EWMA.•Their performance to remove noise from synthetic sensor data is assessed.•Comparison criteria are RMSE reduction and SNR improvement.•Optimal parameters were considered for...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering 2023-10, Vol.178, p.108380, Article 108380
Main Authors: Thibault, Émilie, Désilets, Francis Lebreux, Poulin, Bruno, Chioua, Moncef, Stuart, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33
cites cdi_FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33
container_end_page
container_issue
container_start_page 108380
container_title Computers & chemical engineering
container_volume 178
creator Thibault, Émilie
Désilets, Francis Lebreux
Poulin, Bruno
Chioua, Moncef
Stuart, Paul
description •Wavelet transforms are more performant than other signal processing approaches.•Tested approaches include: KF, STFT and EWMA.•Their performance to remove noise from synthetic sensor data is assessed.•Comparison criteria are RMSE reduction and SNR improvement.•Optimal parameters were considered for each approach. Plant sensor data contain errors that can hamper process analysis and decision-making. Those dataset are not used to their full potential due to the complexity of their processing. This paper addresses these challenges by comparing popular data processing techniques based on their ability to process sensor data, all that while using optimal parameters. The latter are obtained for all approaches using an algorithm that performs a parametric sweep. The performance of Kalman filter, exponential weighted moving average filter, short-time Fourier transform, and wavelet transform to process synthetic flow and temperature signals from a heat exchanger network simulation is quantified given two criteria: signal-to-noise ratio (SNR) and root mean square error (RMSE). It is found that most of the time, wavelet transform showed the highest RMSE reduction and SNR improvement; the wavelet transform can effectively filter signals from distinct variables from a heat exchanger network simulation when optimal parameters are selected. [Display omitted]
doi_str_mv 10.1016/j.compchemeng.2023.108380
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compchemeng_2023_108380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135423002508</els_id><sourcerecordid>S0098135423002508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD-YDUvxIGmeJIh6VKrGBteU6k8SlsSPbBfoN_DQO7YIlq5FG517NHIRuKVlQQpd324V2w6h7GMB2C0YYT3vBBTlDMypKnuW8LM7RjJBKZJQX-SW6CmFLCGG5EDP0Xae48iY4i12Lg-ms2uHROw0hGNvhAWLvmoC1s8E04Kdd7MF47MZohglWXiUKfMD730g42EREo091ARuLFe5BRQxfule2A48txE_n3xMz7HcqGmev0UWbaLg5zTl6e3x4rZ-z9cvTqr5fZ5ozGjOVb1iTN9VGtQ1ti6UiRVLBllWR_ispJ5wpwRnXotSsgooyIkrCxaagBQHN-RxVx17tXQgeWjn69Ik_SErkZFVu5R-rcrIqj1ZTtj5mIR34YcDLoA1YDY3xoKNsnPlHyw806ooQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Thibault, Émilie ; Désilets, Francis Lebreux ; Poulin, Bruno ; Chioua, Moncef ; Stuart, Paul</creator><creatorcontrib>Thibault, Émilie ; Désilets, Francis Lebreux ; Poulin, Bruno ; Chioua, Moncef ; Stuart, Paul</creatorcontrib><description>•Wavelet transforms are more performant than other signal processing approaches.•Tested approaches include: KF, STFT and EWMA.•Their performance to remove noise from synthetic sensor data is assessed.•Comparison criteria are RMSE reduction and SNR improvement.•Optimal parameters were considered for each approach. Plant sensor data contain errors that can hamper process analysis and decision-making. Those dataset are not used to their full potential due to the complexity of their processing. This paper addresses these challenges by comparing popular data processing techniques based on their ability to process sensor data, all that while using optimal parameters. The latter are obtained for all approaches using an algorithm that performs a parametric sweep. The performance of Kalman filter, exponential weighted moving average filter, short-time Fourier transform, and wavelet transform to process synthetic flow and temperature signals from a heat exchanger network simulation is quantified given two criteria: signal-to-noise ratio (SNR) and root mean square error (RMSE). It is found that most of the time, wavelet transform showed the highest RMSE reduction and SNR improvement; the wavelet transform can effectively filter signals from distinct variables from a heat exchanger network simulation when optimal parameters are selected. [Display omitted]</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2023.108380</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>EWMA ; Kalman filter ; Noise reduction ; Performance analysis ; Short time Fourier transform ; Wavelet transform</subject><ispartof>Computers &amp; chemical engineering, 2023-10, Vol.178, p.108380, Article 108380</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33</citedby><cites>FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33</cites><orcidid>0000-0001-9357-6911 ; 0000-0002-8090-4792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thibault, Émilie</creatorcontrib><creatorcontrib>Désilets, Francis Lebreux</creatorcontrib><creatorcontrib>Poulin, Bruno</creatorcontrib><creatorcontrib>Chioua, Moncef</creatorcontrib><creatorcontrib>Stuart, Paul</creatorcontrib><title>Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation</title><title>Computers &amp; chemical engineering</title><description>•Wavelet transforms are more performant than other signal processing approaches.•Tested approaches include: KF, STFT and EWMA.•Their performance to remove noise from synthetic sensor data is assessed.•Comparison criteria are RMSE reduction and SNR improvement.•Optimal parameters were considered for each approach. Plant sensor data contain errors that can hamper process analysis and decision-making. Those dataset are not used to their full potential due to the complexity of their processing. This paper addresses these challenges by comparing popular data processing techniques based on their ability to process sensor data, all that while using optimal parameters. The latter are obtained for all approaches using an algorithm that performs a parametric sweep. The performance of Kalman filter, exponential weighted moving average filter, short-time Fourier transform, and wavelet transform to process synthetic flow and temperature signals from a heat exchanger network simulation is quantified given two criteria: signal-to-noise ratio (SNR) and root mean square error (RMSE). It is found that most of the time, wavelet transform showed the highest RMSE reduction and SNR improvement; the wavelet transform can effectively filter signals from distinct variables from a heat exchanger network simulation when optimal parameters are selected. [Display omitted]</description><subject>EWMA</subject><subject>Kalman filter</subject><subject>Noise reduction</subject><subject>Performance analysis</subject><subject>Short time Fourier transform</subject><subject>Wavelet transform</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD-YDUvxIGmeJIh6VKrGBteU6k8SlsSPbBfoN_DQO7YIlq5FG517NHIRuKVlQQpd324V2w6h7GMB2C0YYT3vBBTlDMypKnuW8LM7RjJBKZJQX-SW6CmFLCGG5EDP0Xae48iY4i12Lg-ms2uHROw0hGNvhAWLvmoC1s8E04Kdd7MF47MZohglWXiUKfMD730g42EREo091ARuLFe5BRQxfule2A48txE_n3xMz7HcqGmev0UWbaLg5zTl6e3x4rZ-z9cvTqr5fZ5ozGjOVb1iTN9VGtQ1ti6UiRVLBllWR_ispJ5wpwRnXotSsgooyIkrCxaagBQHN-RxVx17tXQgeWjn69Ik_SErkZFVu5R-rcrIqj1ZTtj5mIR34YcDLoA1YDY3xoKNsnPlHyw806ooQ</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Thibault, Émilie</creator><creator>Désilets, Francis Lebreux</creator><creator>Poulin, Bruno</creator><creator>Chioua, Moncef</creator><creator>Stuart, Paul</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9357-6911</orcidid><orcidid>https://orcid.org/0000-0002-8090-4792</orcidid></search><sort><creationdate>202310</creationdate><title>Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation</title><author>Thibault, Émilie ; Désilets, Francis Lebreux ; Poulin, Bruno ; Chioua, Moncef ; Stuart, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>EWMA</topic><topic>Kalman filter</topic><topic>Noise reduction</topic><topic>Performance analysis</topic><topic>Short time Fourier transform</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thibault, Émilie</creatorcontrib><creatorcontrib>Désilets, Francis Lebreux</creatorcontrib><creatorcontrib>Poulin, Bruno</creatorcontrib><creatorcontrib>Chioua, Moncef</creatorcontrib><creatorcontrib>Stuart, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thibault, Émilie</au><au>Désilets, Francis Lebreux</au><au>Poulin, Bruno</au><au>Chioua, Moncef</au><au>Stuart, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2023-10</date><risdate>2023</risdate><volume>178</volume><spage>108380</spage><pages>108380-</pages><artnum>108380</artnum><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>•Wavelet transforms are more performant than other signal processing approaches.•Tested approaches include: KF, STFT and EWMA.•Their performance to remove noise from synthetic sensor data is assessed.•Comparison criteria are RMSE reduction and SNR improvement.•Optimal parameters were considered for each approach. Plant sensor data contain errors that can hamper process analysis and decision-making. Those dataset are not used to their full potential due to the complexity of their processing. This paper addresses these challenges by comparing popular data processing techniques based on their ability to process sensor data, all that while using optimal parameters. The latter are obtained for all approaches using an algorithm that performs a parametric sweep. The performance of Kalman filter, exponential weighted moving average filter, short-time Fourier transform, and wavelet transform to process synthetic flow and temperature signals from a heat exchanger network simulation is quantified given two criteria: signal-to-noise ratio (SNR) and root mean square error (RMSE). It is found that most of the time, wavelet transform showed the highest RMSE reduction and SNR improvement; the wavelet transform can effectively filter signals from distinct variables from a heat exchanger network simulation when optimal parameters are selected. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2023.108380</doi><orcidid>https://orcid.org/0000-0001-9357-6911</orcidid><orcidid>https://orcid.org/0000-0002-8090-4792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2023-10, Vol.178, p.108380, Article 108380
issn 0098-1354
1873-4375
language eng
recordid cdi_crossref_primary_10_1016_j_compchemeng_2023_108380
source ScienceDirect Freedom Collection 2022-2024
subjects EWMA
Kalman filter
Noise reduction
Performance analysis
Short time Fourier transform
Wavelet transform
title Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20signal%20processing%20methods%20considering%20their%20optimal%20parameters%20using%20synthetic%20signals%20in%20a%20heat%20exchanger%20network%20simulation&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Thibault,%20%C3%89milie&rft.date=2023-10&rft.volume=178&rft.spage=108380&rft.pages=108380-&rft.artnum=108380&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2023.108380&rft_dat=%3Celsevier_cross%3ES0098135423002508%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-a4b2d4d9bafd1f56a051012695135713032a8323c87c29e912087038b5150ec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true