Loading…

Back projection deep unrolling network for handwritten text image super resolution

Current super-resolution (SR) methods have demonstrated exceptional advancements in the domain of natural image processing. Nevertheless, these approaches do not fully address the open issues of edge blurring and distortion. In order to address the aforementioned challenges, we propose a novel deep...

Full description

Saved in:
Bibliographic Details
Published in:Computers & electrical engineering 2023-11, Vol.111, p.108965, Article 108965
Main Authors: Song, Heping, Ma, Hui, Si, Yixiong, Gong, Jingyao, Meng, Hongying, Lai, Yuping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3
cites cdi_FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3
container_end_page
container_issue
container_start_page 108965
container_title Computers & electrical engineering
container_volume 111
creator Song, Heping
Ma, Hui
Si, Yixiong
Gong, Jingyao
Meng, Hongying
Lai, Yuping
description Current super-resolution (SR) methods have demonstrated exceptional advancements in the domain of natural image processing. Nevertheless, these approaches do not fully address the open issues of edge blurring and distortion. In order to address the aforementioned challenges, we propose a novel deep unrolling model, coined back projection deep unrolling network (BPDUN), for super-resolution of handwritten text images leveraging the Algorithm Unrolling paradigm. We design the network model of BPDUN by unfolding and truncating the traditional iterative back projection algorithm (IBPA). We unroll IBPA into a cascade operation of three building blocks (deep denoising module, low-frequency reconstruction module, and residual projection module). BPDUN inherits the interpretability of the iterative optimization algorithm and is also designed to make the reconstructed text image more realistic and natural. Moreover, we propose a new benchmark dataset to address challenging SR problems of handwritten text image (HDT300). Extensive experiments show that BPDUN obtains an enhanced balance between the performance (quantified by PSNR and SSIM) and the cost (as measured by network parameters). Notably, BPDUN sets new benchmarks on the HDT300 dataset, surpassing previous state-of-the-art approaches by achieving up to 0.2 dB gains in PSNR. •BPDUN, a deep unrolling network is proposed to solve the super-resolution problems.•A benchmark dataset HDT300 is constructed for handwritten image super-resolution.•BPDUN is on par with the SOTA models and achieves new SOTA results on HDT300.
doi_str_mv 10.1016/j.compeleceng.2023.108965
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compeleceng_2023_108965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790623003890</els_id><sourcerecordid>S0045790623003890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3</originalsourceid><addsrcrecordid>eNqNkNtKAzEURYMoWKv_ED9gai7NXB61eIOCIPocZk7O1EynyZCkVv_eKeODjz4d9oG92CxCrjlbcMbzm24Bfjdgj4BusxBMyPFfVrk6ITNeFlXGCqVOyYyxpcqKiuXn5CLGjo055-WMvN7VsKVD8B1Cst5RgzjQvQu-763bUIfp4MOWtj7Qj9qZQ7ApoaMJvxK1u3qDNO4HDDRg9P3-iLgkZ23dR7z6vXPy_nD_tnrK1i-Pz6vbdQZS8JTJqslBNkKYujWsMqqUquAcVWMgr42BQkiDjeSmVFCyXDIQooFacSlx2YCck2riQvAxBmz1EMZF4Vtzpo9ydKf_yNFHOXqSM3ZXUxfHgZ8Wg45g0QEaG0YR2nj7D8oPMYV2Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Back projection deep unrolling network for handwritten text image super resolution</title><source>ScienceDirect Journals</source><creator>Song, Heping ; Ma, Hui ; Si, Yixiong ; Gong, Jingyao ; Meng, Hongying ; Lai, Yuping</creator><creatorcontrib>Song, Heping ; Ma, Hui ; Si, Yixiong ; Gong, Jingyao ; Meng, Hongying ; Lai, Yuping</creatorcontrib><description>Current super-resolution (SR) methods have demonstrated exceptional advancements in the domain of natural image processing. Nevertheless, these approaches do not fully address the open issues of edge blurring and distortion. In order to address the aforementioned challenges, we propose a novel deep unrolling model, coined back projection deep unrolling network (BPDUN), for super-resolution of handwritten text images leveraging the Algorithm Unrolling paradigm. We design the network model of BPDUN by unfolding and truncating the traditional iterative back projection algorithm (IBPA). We unroll IBPA into a cascade operation of three building blocks (deep denoising module, low-frequency reconstruction module, and residual projection module). BPDUN inherits the interpretability of the iterative optimization algorithm and is also designed to make the reconstructed text image more realistic and natural. Moreover, we propose a new benchmark dataset to address challenging SR problems of handwritten text image (HDT300). Extensive experiments show that BPDUN obtains an enhanced balance between the performance (quantified by PSNR and SSIM) and the cost (as measured by network parameters). Notably, BPDUN sets new benchmarks on the HDT300 dataset, surpassing previous state-of-the-art approaches by achieving up to 0.2 dB gains in PSNR. •BPDUN, a deep unrolling network is proposed to solve the super-resolution problems.•A benchmark dataset HDT300 is constructed for handwritten image super-resolution.•BPDUN is on par with the SOTA models and achieves new SOTA results on HDT300.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2023.108965</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Back projection ; Deep unrolling ; Handwritten text image ; Super resolution</subject><ispartof>Computers &amp; electrical engineering, 2023-11, Vol.111, p.108965, Article 108965</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3</citedby><cites>FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3</cites><orcidid>0000-0002-8836-1382 ; 0000-0002-8583-2804 ; 0009-0009-5907-5836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Heping</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Si, Yixiong</creatorcontrib><creatorcontrib>Gong, Jingyao</creatorcontrib><creatorcontrib>Meng, Hongying</creatorcontrib><creatorcontrib>Lai, Yuping</creatorcontrib><title>Back projection deep unrolling network for handwritten text image super resolution</title><title>Computers &amp; electrical engineering</title><description>Current super-resolution (SR) methods have demonstrated exceptional advancements in the domain of natural image processing. Nevertheless, these approaches do not fully address the open issues of edge blurring and distortion. In order to address the aforementioned challenges, we propose a novel deep unrolling model, coined back projection deep unrolling network (BPDUN), for super-resolution of handwritten text images leveraging the Algorithm Unrolling paradigm. We design the network model of BPDUN by unfolding and truncating the traditional iterative back projection algorithm (IBPA). We unroll IBPA into a cascade operation of three building blocks (deep denoising module, low-frequency reconstruction module, and residual projection module). BPDUN inherits the interpretability of the iterative optimization algorithm and is also designed to make the reconstructed text image more realistic and natural. Moreover, we propose a new benchmark dataset to address challenging SR problems of handwritten text image (HDT300). Extensive experiments show that BPDUN obtains an enhanced balance between the performance (quantified by PSNR and SSIM) and the cost (as measured by network parameters). Notably, BPDUN sets new benchmarks on the HDT300 dataset, surpassing previous state-of-the-art approaches by achieving up to 0.2 dB gains in PSNR. •BPDUN, a deep unrolling network is proposed to solve the super-resolution problems.•A benchmark dataset HDT300 is constructed for handwritten image super-resolution.•BPDUN is on par with the SOTA models and achieves new SOTA results on HDT300.</description><subject>Back projection</subject><subject>Deep unrolling</subject><subject>Handwritten text image</subject><subject>Super resolution</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkNtKAzEURYMoWKv_ED9gai7NXB61eIOCIPocZk7O1EynyZCkVv_eKeODjz4d9oG92CxCrjlbcMbzm24Bfjdgj4BusxBMyPFfVrk6ITNeFlXGCqVOyYyxpcqKiuXn5CLGjo055-WMvN7VsKVD8B1Cst5RgzjQvQu-763bUIfp4MOWtj7Qj9qZQ7ApoaMJvxK1u3qDNO4HDDRg9P3-iLgkZ23dR7z6vXPy_nD_tnrK1i-Pz6vbdQZS8JTJqslBNkKYujWsMqqUquAcVWMgr42BQkiDjeSmVFCyXDIQooFacSlx2YCck2riQvAxBmz1EMZF4Vtzpo9ydKf_yNFHOXqSM3ZXUxfHgZ8Wg45g0QEaG0YR2nj7D8oPMYV2Ng</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Song, Heping</creator><creator>Ma, Hui</creator><creator>Si, Yixiong</creator><creator>Gong, Jingyao</creator><creator>Meng, Hongying</creator><creator>Lai, Yuping</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8836-1382</orcidid><orcidid>https://orcid.org/0000-0002-8583-2804</orcidid><orcidid>https://orcid.org/0009-0009-5907-5836</orcidid></search><sort><creationdate>202311</creationdate><title>Back projection deep unrolling network for handwritten text image super resolution</title><author>Song, Heping ; Ma, Hui ; Si, Yixiong ; Gong, Jingyao ; Meng, Hongying ; Lai, Yuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Back projection</topic><topic>Deep unrolling</topic><topic>Handwritten text image</topic><topic>Super resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Heping</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Si, Yixiong</creatorcontrib><creatorcontrib>Gong, Jingyao</creatorcontrib><creatorcontrib>Meng, Hongying</creatorcontrib><creatorcontrib>Lai, Yuping</creatorcontrib><collection>CrossRef</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Heping</au><au>Ma, Hui</au><au>Si, Yixiong</au><au>Gong, Jingyao</au><au>Meng, Hongying</au><au>Lai, Yuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back projection deep unrolling network for handwritten text image super resolution</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2023-11</date><risdate>2023</risdate><volume>111</volume><spage>108965</spage><pages>108965-</pages><artnum>108965</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Current super-resolution (SR) methods have demonstrated exceptional advancements in the domain of natural image processing. Nevertheless, these approaches do not fully address the open issues of edge blurring and distortion. In order to address the aforementioned challenges, we propose a novel deep unrolling model, coined back projection deep unrolling network (BPDUN), for super-resolution of handwritten text images leveraging the Algorithm Unrolling paradigm. We design the network model of BPDUN by unfolding and truncating the traditional iterative back projection algorithm (IBPA). We unroll IBPA into a cascade operation of three building blocks (deep denoising module, low-frequency reconstruction module, and residual projection module). BPDUN inherits the interpretability of the iterative optimization algorithm and is also designed to make the reconstructed text image more realistic and natural. Moreover, we propose a new benchmark dataset to address challenging SR problems of handwritten text image (HDT300). Extensive experiments show that BPDUN obtains an enhanced balance between the performance (quantified by PSNR and SSIM) and the cost (as measured by network parameters). Notably, BPDUN sets new benchmarks on the HDT300 dataset, surpassing previous state-of-the-art approaches by achieving up to 0.2 dB gains in PSNR. •BPDUN, a deep unrolling network is proposed to solve the super-resolution problems.•A benchmark dataset HDT300 is constructed for handwritten image super-resolution.•BPDUN is on par with the SOTA models and achieves new SOTA results on HDT300.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2023.108965</doi><orcidid>https://orcid.org/0000-0002-8836-1382</orcidid><orcidid>https://orcid.org/0000-0002-8583-2804</orcidid><orcidid>https://orcid.org/0009-0009-5907-5836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2023-11, Vol.111, p.108965, Article 108965
issn 0045-7906
1879-0755
language eng
recordid cdi_crossref_primary_10_1016_j_compeleceng_2023_108965
source ScienceDirect Journals
subjects Back projection
Deep unrolling
Handwritten text image
Super resolution
title Back projection deep unrolling network for handwritten text image super resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20projection%20deep%20unrolling%20network%20for%20handwritten%20text%20image%20super%20resolution&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Song,%20Heping&rft.date=2023-11&rft.volume=111&rft.spage=108965&rft.pages=108965-&rft.artnum=108965&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2023.108965&rft_dat=%3Celsevier_cross%3ES0045790623003890%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-39b6c3b22dafd09d5835711e5bdc6addc723deb31d85c80630c22bca5133e4bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true