Loading…

Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding

Considering the concealment of inverter open-circuit faults in yaw system of wind turbines, a method for diagnosing open-circuit fault of yaw system inverter is proposed based on Gramian Angular Difference Field (GADF) image coding in this article. Firstly, the current vector phase in the vicinity o...

Full description

Saved in:
Bibliographic Details
Published in:Computers & electrical engineering 2024-07, Vol.117, p.109252, Article 109252
Main Authors: Hu, Yaogang, Luo, Pengwen, Liu, Huaisheng, Shi, Pingping, Jiang, Neng, Deng, Qinhan, Liu, Shunqiang, Zhou, Jingsen, Han, Huali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c265t-8a2766fba039a2d87c9803def10836421c17cf973bbbd2fb561d5025b82056f93
container_end_page
container_issue
container_start_page 109252
container_title Computers & electrical engineering
container_volume 117
creator Hu, Yaogang
Luo, Pengwen
Liu, Huaisheng
Shi, Pingping
Jiang, Neng
Deng, Qinhan
Liu, Shunqiang
Zhou, Jingsen
Han, Huali
description Considering the concealment of inverter open-circuit faults in yaw system of wind turbines, a method for diagnosing open-circuit fault of yaw system inverter is proposed based on Gramian Angular Difference Field (GADF) image coding in this article. Firstly, the current vector phase in the vicinity of relatively high yaw speed is collected as monitoring data. Secondly, considering the insufficient fault feature extraction ability of Convolutional Neural Network (CNN) structures with single dimensional data input during model training, the one-dimensional current vector phase is encoded into two-dimensional image by GADF image coding and an effective CNN fault diagnosis model is obtained with fewer fault samples. Finally, by comparing with actual monitoring data of wind turbine, the effectiveness of yaw system simulation model is verified. The proposed method can achieve identification and localization of open-circuit fault for single and two power devices, which is found to have better anti-noise interference effect and the results are not affected by yaw angle and mechanical torque. It is approved that the proposed method is effective with a simulation on the RT-LAB platform.
doi_str_mv 10.1016/j.compeleceng.2024.109252
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compeleceng_2024_109252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790624001800</els_id><sourcerecordid>S0045790624001800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-8a2766fba039a2d87c9803def10836421c17cf973bbbd2fb561d5025b82056f93</originalsourceid><addsrcrecordid>eNqNkM1OAjEUhRujiYi-Q32AwbZDO9MlQUETEja6bvpzO5ZAh7QFwts7BBcuXd17T-45OfkQeqZkQgkVL5uJ7Xd72IKF2E0YYdNBl4yzGzSibSMr0nB-i0aETHnVSCLu0UPOGzLcgrYjBOs9xMqGZA-hYK8P24Jd0F3sc8h4B-W7d7j3OMQjpAJpWPApRIfLIZkQAZ_1CedzLrDDRmcYniNezl4XOOx0B9j2LsTuEd15vc3w9DvH6Gvx9jl_r1br5cd8tqosE7xUrWaNEN5oUkvNXNtY2ZLagaekrcWUUUsb62VTG2Mc84YL6jhh3LSMcOFlPUbymmtTn3MCr_Zp6JHOihJ14aU26g8vdeGlrrwG7_zqhaHgMUBS2QaIFlxIYItyffhHyg8y1nqb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding</title><source>ScienceDirect Freedom Collection</source><creator>Hu, Yaogang ; Luo, Pengwen ; Liu, Huaisheng ; Shi, Pingping ; Jiang, Neng ; Deng, Qinhan ; Liu, Shunqiang ; Zhou, Jingsen ; Han, Huali</creator><creatorcontrib>Hu, Yaogang ; Luo, Pengwen ; Liu, Huaisheng ; Shi, Pingping ; Jiang, Neng ; Deng, Qinhan ; Liu, Shunqiang ; Zhou, Jingsen ; Han, Huali</creatorcontrib><description>Considering the concealment of inverter open-circuit faults in yaw system of wind turbines, a method for diagnosing open-circuit fault of yaw system inverter is proposed based on Gramian Angular Difference Field (GADF) image coding in this article. Firstly, the current vector phase in the vicinity of relatively high yaw speed is collected as monitoring data. Secondly, considering the insufficient fault feature extraction ability of Convolutional Neural Network (CNN) structures with single dimensional data input during model training, the one-dimensional current vector phase is encoded into two-dimensional image by GADF image coding and an effective CNN fault diagnosis model is obtained with fewer fault samples. Finally, by comparing with actual monitoring data of wind turbine, the effectiveness of yaw system simulation model is verified. The proposed method can achieve identification and localization of open-circuit fault for single and two power devices, which is found to have better anti-noise interference effect and the results are not affected by yaw angle and mechanical torque. It is approved that the proposed method is effective with a simulation on the RT-LAB platform.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2024.109252</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Convolution neural network ; Gram angle field ; Inverter ; Open-circuit fault ; Wind turbine ; Yaw system</subject><ispartof>Computers &amp; electrical engineering, 2024-07, Vol.117, p.109252, Article 109252</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-8a2766fba039a2d87c9803def10836421c17cf973bbbd2fb561d5025b82056f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Yaogang</creatorcontrib><creatorcontrib>Luo, Pengwen</creatorcontrib><creatorcontrib>Liu, Huaisheng</creatorcontrib><creatorcontrib>Shi, Pingping</creatorcontrib><creatorcontrib>Jiang, Neng</creatorcontrib><creatorcontrib>Deng, Qinhan</creatorcontrib><creatorcontrib>Liu, Shunqiang</creatorcontrib><creatorcontrib>Zhou, Jingsen</creatorcontrib><creatorcontrib>Han, Huali</creatorcontrib><title>Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding</title><title>Computers &amp; electrical engineering</title><description>Considering the concealment of inverter open-circuit faults in yaw system of wind turbines, a method for diagnosing open-circuit fault of yaw system inverter is proposed based on Gramian Angular Difference Field (GADF) image coding in this article. Firstly, the current vector phase in the vicinity of relatively high yaw speed is collected as monitoring data. Secondly, considering the insufficient fault feature extraction ability of Convolutional Neural Network (CNN) structures with single dimensional data input during model training, the one-dimensional current vector phase is encoded into two-dimensional image by GADF image coding and an effective CNN fault diagnosis model is obtained with fewer fault samples. Finally, by comparing with actual monitoring data of wind turbine, the effectiveness of yaw system simulation model is verified. The proposed method can achieve identification and localization of open-circuit fault for single and two power devices, which is found to have better anti-noise interference effect and the results are not affected by yaw angle and mechanical torque. It is approved that the proposed method is effective with a simulation on the RT-LAB platform.</description><subject>Convolution neural network</subject><subject>Gram angle field</subject><subject>Inverter</subject><subject>Open-circuit fault</subject><subject>Wind turbine</subject><subject>Yaw system</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OAjEUhRujiYi-Q32AwbZDO9MlQUETEja6bvpzO5ZAh7QFwts7BBcuXd17T-45OfkQeqZkQgkVL5uJ7Xd72IKF2E0YYdNBl4yzGzSibSMr0nB-i0aETHnVSCLu0UPOGzLcgrYjBOs9xMqGZA-hYK8P24Jd0F3sc8h4B-W7d7j3OMQjpAJpWPApRIfLIZkQAZ_1CedzLrDDRmcYniNezl4XOOx0B9j2LsTuEd15vc3w9DvH6Gvx9jl_r1br5cd8tqosE7xUrWaNEN5oUkvNXNtY2ZLagaekrcWUUUsb62VTG2Mc84YL6jhh3LSMcOFlPUbymmtTn3MCr_Zp6JHOihJ14aU26g8vdeGlrrwG7_zqhaHgMUBS2QaIFlxIYItyffhHyg8y1nqb</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Hu, Yaogang</creator><creator>Luo, Pengwen</creator><creator>Liu, Huaisheng</creator><creator>Shi, Pingping</creator><creator>Jiang, Neng</creator><creator>Deng, Qinhan</creator><creator>Liu, Shunqiang</creator><creator>Zhou, Jingsen</creator><creator>Han, Huali</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202407</creationdate><title>Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding</title><author>Hu, Yaogang ; Luo, Pengwen ; Liu, Huaisheng ; Shi, Pingping ; Jiang, Neng ; Deng, Qinhan ; Liu, Shunqiang ; Zhou, Jingsen ; Han, Huali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-8a2766fba039a2d87c9803def10836421c17cf973bbbd2fb561d5025b82056f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolution neural network</topic><topic>Gram angle field</topic><topic>Inverter</topic><topic>Open-circuit fault</topic><topic>Wind turbine</topic><topic>Yaw system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yaogang</creatorcontrib><creatorcontrib>Luo, Pengwen</creatorcontrib><creatorcontrib>Liu, Huaisheng</creatorcontrib><creatorcontrib>Shi, Pingping</creatorcontrib><creatorcontrib>Jiang, Neng</creatorcontrib><creatorcontrib>Deng, Qinhan</creatorcontrib><creatorcontrib>Liu, Shunqiang</creatorcontrib><creatorcontrib>Zhou, Jingsen</creatorcontrib><creatorcontrib>Han, Huali</creatorcontrib><collection>CrossRef</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yaogang</au><au>Luo, Pengwen</au><au>Liu, Huaisheng</au><au>Shi, Pingping</au><au>Jiang, Neng</au><au>Deng, Qinhan</au><au>Liu, Shunqiang</au><au>Zhou, Jingsen</au><au>Han, Huali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2024-07</date><risdate>2024</risdate><volume>117</volume><spage>109252</spage><pages>109252-</pages><artnum>109252</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Considering the concealment of inverter open-circuit faults in yaw system of wind turbines, a method for diagnosing open-circuit fault of yaw system inverter is proposed based on Gramian Angular Difference Field (GADF) image coding in this article. Firstly, the current vector phase in the vicinity of relatively high yaw speed is collected as monitoring data. Secondly, considering the insufficient fault feature extraction ability of Convolutional Neural Network (CNN) structures with single dimensional data input during model training, the one-dimensional current vector phase is encoded into two-dimensional image by GADF image coding and an effective CNN fault diagnosis model is obtained with fewer fault samples. Finally, by comparing with actual monitoring data of wind turbine, the effectiveness of yaw system simulation model is verified. The proposed method can achieve identification and localization of open-circuit fault for single and two power devices, which is found to have better anti-noise interference effect and the results are not affected by yaw angle and mechanical torque. It is approved that the proposed method is effective with a simulation on the RT-LAB platform.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2024.109252</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2024-07, Vol.117, p.109252, Article 109252
issn 0045-7906
1879-0755
language eng
recordid cdi_crossref_primary_10_1016_j_compeleceng_2024_109252
source ScienceDirect Freedom Collection
subjects Convolution neural network
Gram angle field
Inverter
Open-circuit fault
Wind turbine
Yaw system
title Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-circuit%20fault%20diagnosis%20method%20of%20inverter%20in%20wind%20turbine%20yaw%20system%20based%20on%20GADF%20image%20coding&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Hu,%20Yaogang&rft.date=2024-07&rft.volume=117&rft.spage=109252&rft.pages=109252-&rft.artnum=109252&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2024.109252&rft_dat=%3Celsevier_cross%3ES0045790624001800%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-8a2766fba039a2d87c9803def10836421c17cf973bbbd2fb561d5025b82056f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true