Loading…

A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data

[Display omitted] •Feature extraction and selection related to PROFINET networks process data, not demanding dedicated sensors for fault detection.•Condition monitoring system provided by a cloud service and internet of things strategy to detect and identify anomalous operation condition of rotating...

Full description

Saved in:
Bibliographic Details
Published in:Computers in industry 2021-04, Vol.126, p.103394, Article 103394
Main Authors: Dias, Andre Luis, Turcato, Afonso Celso, Sestito, Guilherme Serpa, Brandao, Dennis, Nicoletti, Rodrigo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3
cites cdi_FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3
container_end_page
container_issue
container_start_page 103394
container_title Computers in industry
container_volume 126
creator Dias, Andre Luis
Turcato, Afonso Celso
Sestito, Guilherme Serpa
Brandao, Dennis
Nicoletti, Rodrigo
description [Display omitted] •Feature extraction and selection related to PROFINET networks process data, not demanding dedicated sensors for fault detection.•Condition monitoring system provided by a cloud service and internet of things strategy to detect and identify anomalous operation condition of rotating machines.•Proposes a novel strategy for feature selection for unary classification of data sets•Three common faults is rotating machines are investigated: uncoupling, angular and parallel misalignment. This work presents a methodology for a cloud-based condition monitoring system for fault detection and identification in rotating machines, such as uncoupling, angular and parallel misalignment, by data mining PROFINET network and PROFIdrive profile process data. The proposed methodology involves a new strategy for feature selection of unsupervised data set and employs SVM (Support Vector Machine) and OCSVM (One-Class Support Vector Machine) for operation status classification. The present diagnostic system represents a low-cost solution to the manufacturing process of small and medium enterprises, because it does not require dedicated sensors for fault detection and high featured hardware, and it employs an online cloud-based services. The experimental tests resulted in an accuracy between 87.5% and 100%, and high robustness among different operating conditions. In addition, the proposed feature selection strategy reduced the total execution time by 97.5%.
doi_str_mv 10.1016/j.compind.2021.103394
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compind_2021_103394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166361521000014</els_id><sourcerecordid>S0166361521000014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKcfQcgX6GyaJl2fZIxNB8OJzOeQXq6asSYjyYR9e1u3d-_luLv__bn7EfLI8gnLmXzaTcB3B-vMpMgL1vc4r8srMmLTqsgkq8trMup1MuOSiVtyF-Mu76Oq5Ii4GYW9P5qs0RENBe-MTdY72nlnkw_WfdF4igk72vpAW33cJ2owIfyprKPBJ50GWafh2zqM9BiH8v1js1y9Lbb0EDxgjNTopO_JTav3ER8ueUw-l4vt_DVbb15W89k6A57XKdNC67JmZspF0bQlE42QYlqgwBYLkFi0chgxVtUogHOQMK2qxpTYVACN4WMizr4QfIwBW3UIttPhpFiuBmhqpy7Q1ABNnaH1e8_nPeyP-7EYVASLDtDY0L-sjLf_OPwCV7B6QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dias, Andre Luis ; Turcato, Afonso Celso ; Sestito, Guilherme Serpa ; Brandao, Dennis ; Nicoletti, Rodrigo</creator><creatorcontrib>Dias, Andre Luis ; Turcato, Afonso Celso ; Sestito, Guilherme Serpa ; Brandao, Dennis ; Nicoletti, Rodrigo</creatorcontrib><description>[Display omitted] •Feature extraction and selection related to PROFINET networks process data, not demanding dedicated sensors for fault detection.•Condition monitoring system provided by a cloud service and internet of things strategy to detect and identify anomalous operation condition of rotating machines.•Proposes a novel strategy for feature selection for unary classification of data sets•Three common faults is rotating machines are investigated: uncoupling, angular and parallel misalignment. This work presents a methodology for a cloud-based condition monitoring system for fault detection and identification in rotating machines, such as uncoupling, angular and parallel misalignment, by data mining PROFINET network and PROFIdrive profile process data. The proposed methodology involves a new strategy for feature selection of unsupervised data set and employs SVM (Support Vector Machine) and OCSVM (One-Class Support Vector Machine) for operation status classification. The present diagnostic system represents a low-cost solution to the manufacturing process of small and medium enterprises, because it does not require dedicated sensors for fault detection and high featured hardware, and it employs an online cloud-based services. The experimental tests resulted in an accuracy between 87.5% and 100%, and high robustness among different operating conditions. In addition, the proposed feature selection strategy reduced the total execution time by 97.5%.</description><identifier>ISSN: 0166-3615</identifier><identifier>EISSN: 1872-6194</identifier><identifier>DOI: 10.1016/j.compind.2021.103394</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cloud computing ; Condition monitoring ; Feature Selection ; PROFINET ; Rotating machines ; Support vector machine</subject><ispartof>Computers in industry, 2021-04, Vol.126, p.103394, Article 103394</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3</citedby><cites>FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3</cites><orcidid>0000-0003-1558-0581 ; 0000-0003-0483-7847 ; 0000-0001-7910-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dias, Andre Luis</creatorcontrib><creatorcontrib>Turcato, Afonso Celso</creatorcontrib><creatorcontrib>Sestito, Guilherme Serpa</creatorcontrib><creatorcontrib>Brandao, Dennis</creatorcontrib><creatorcontrib>Nicoletti, Rodrigo</creatorcontrib><title>A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data</title><title>Computers in industry</title><description>[Display omitted] •Feature extraction and selection related to PROFINET networks process data, not demanding dedicated sensors for fault detection.•Condition monitoring system provided by a cloud service and internet of things strategy to detect and identify anomalous operation condition of rotating machines.•Proposes a novel strategy for feature selection for unary classification of data sets•Three common faults is rotating machines are investigated: uncoupling, angular and parallel misalignment. This work presents a methodology for a cloud-based condition monitoring system for fault detection and identification in rotating machines, such as uncoupling, angular and parallel misalignment, by data mining PROFINET network and PROFIdrive profile process data. The proposed methodology involves a new strategy for feature selection of unsupervised data set and employs SVM (Support Vector Machine) and OCSVM (One-Class Support Vector Machine) for operation status classification. The present diagnostic system represents a low-cost solution to the manufacturing process of small and medium enterprises, because it does not require dedicated sensors for fault detection and high featured hardware, and it employs an online cloud-based services. The experimental tests resulted in an accuracy between 87.5% and 100%, and high robustness among different operating conditions. In addition, the proposed feature selection strategy reduced the total execution time by 97.5%.</description><subject>Cloud computing</subject><subject>Condition monitoring</subject><subject>Feature Selection</subject><subject>PROFINET</subject><subject>Rotating machines</subject><subject>Support vector machine</subject><issn>0166-3615</issn><issn>1872-6194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOKcfQcgX6GyaJl2fZIxNB8OJzOeQXq6asSYjyYR9e1u3d-_luLv__bn7EfLI8gnLmXzaTcB3B-vMpMgL1vc4r8srMmLTqsgkq8trMup1MuOSiVtyF-Mu76Oq5Ii4GYW9P5qs0RENBe-MTdY72nlnkw_WfdF4igk72vpAW33cJ2owIfyprKPBJ50GWafh2zqM9BiH8v1js1y9Lbb0EDxgjNTopO_JTav3ER8ueUw-l4vt_DVbb15W89k6A57XKdNC67JmZspF0bQlE42QYlqgwBYLkFi0chgxVtUogHOQMK2qxpTYVACN4WMizr4QfIwBW3UIttPhpFiuBmhqpy7Q1ABNnaH1e8_nPeyP-7EYVASLDtDY0L-sjLf_OPwCV7B6QQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Dias, Andre Luis</creator><creator>Turcato, Afonso Celso</creator><creator>Sestito, Guilherme Serpa</creator><creator>Brandao, Dennis</creator><creator>Nicoletti, Rodrigo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1558-0581</orcidid><orcidid>https://orcid.org/0000-0003-0483-7847</orcidid><orcidid>https://orcid.org/0000-0001-7910-562X</orcidid></search><sort><creationdate>202104</creationdate><title>A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data</title><author>Dias, Andre Luis ; Turcato, Afonso Celso ; Sestito, Guilherme Serpa ; Brandao, Dennis ; Nicoletti, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cloud computing</topic><topic>Condition monitoring</topic><topic>Feature Selection</topic><topic>PROFINET</topic><topic>Rotating machines</topic><topic>Support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, Andre Luis</creatorcontrib><creatorcontrib>Turcato, Afonso Celso</creatorcontrib><creatorcontrib>Sestito, Guilherme Serpa</creatorcontrib><creatorcontrib>Brandao, Dennis</creatorcontrib><creatorcontrib>Nicoletti, Rodrigo</creatorcontrib><collection>CrossRef</collection><jtitle>Computers in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, Andre Luis</au><au>Turcato, Afonso Celso</au><au>Sestito, Guilherme Serpa</au><au>Brandao, Dennis</au><au>Nicoletti, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data</atitle><jtitle>Computers in industry</jtitle><date>2021-04</date><risdate>2021</risdate><volume>126</volume><spage>103394</spage><pages>103394-</pages><artnum>103394</artnum><issn>0166-3615</issn><eissn>1872-6194</eissn><abstract>[Display omitted] •Feature extraction and selection related to PROFINET networks process data, not demanding dedicated sensors for fault detection.•Condition monitoring system provided by a cloud service and internet of things strategy to detect and identify anomalous operation condition of rotating machines.•Proposes a novel strategy for feature selection for unary classification of data sets•Three common faults is rotating machines are investigated: uncoupling, angular and parallel misalignment. This work presents a methodology for a cloud-based condition monitoring system for fault detection and identification in rotating machines, such as uncoupling, angular and parallel misalignment, by data mining PROFINET network and PROFIdrive profile process data. The proposed methodology involves a new strategy for feature selection of unsupervised data set and employs SVM (Support Vector Machine) and OCSVM (One-Class Support Vector Machine) for operation status classification. The present diagnostic system represents a low-cost solution to the manufacturing process of small and medium enterprises, because it does not require dedicated sensors for fault detection and high featured hardware, and it employs an online cloud-based services. The experimental tests resulted in an accuracy between 87.5% and 100%, and high robustness among different operating conditions. In addition, the proposed feature selection strategy reduced the total execution time by 97.5%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.compind.2021.103394</doi><orcidid>https://orcid.org/0000-0003-1558-0581</orcidid><orcidid>https://orcid.org/0000-0003-0483-7847</orcidid><orcidid>https://orcid.org/0000-0001-7910-562X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-3615
ispartof Computers in industry, 2021-04, Vol.126, p.103394, Article 103394
issn 0166-3615
1872-6194
language eng
recordid cdi_crossref_primary_10_1016_j_compind_2021_103394
source ScienceDirect Freedom Collection 2022-2024
subjects Cloud computing
Condition monitoring
Feature Selection
PROFINET
Rotating machines
Support vector machine
title A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cloud-based%20condition%20monitoring%20system%20for%20fault%20detection%20in%20rotating%20machines%20using%20PROFINET%20process%20data&rft.jtitle=Computers%20in%20industry&rft.au=Dias,%20Andre%20Luis&rft.date=2021-04&rft.volume=126&rft.spage=103394&rft.pages=103394-&rft.artnum=103394&rft.issn=0166-3615&rft.eissn=1872-6194&rft_id=info:doi/10.1016/j.compind.2021.103394&rft_dat=%3Celsevier_cross%3ES0166361521000014%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-a5aa491d8352bf415b56582e5efe2c6e2f683521179e5c33c6c877bd4eb7ccbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true