Loading…

Damage evolution analysis of C/SiC screwed/bonded hybrid joints based on in-situ micro-CT technique

Due to own good high temperature mechanical properties, the C/SiC screwed/bonded hybrid joints are considered as an important development direction of vehicle connection structures. However, the difficulty of directly monitoring the interior of the hybrid joints during the bearing presents a potenti...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2024-11, Vol.186, p.108417, Article 108417
Main Authors: Li, Bingyao, Ge, Jingran, Wu, Zhenqiang, Liu, Xiaodong, Zhang, Binbin, Zhao, Shuwei, Wu, Zengwen, Liang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to own good high temperature mechanical properties, the C/SiC screwed/bonded hybrid joints are considered as an important development direction of vehicle connection structures. However, the difficulty of directly monitoring the interior of the hybrid joints during the bearing presents a potential challenge to the structural damage assessment. In this study, the damage process of the hybrid joints subjected to tensile loading was monitored and characterized based on the in-situ micro-CT technique. The intrinsic relationship between the mechanical responses of the hybrid joints and the local damage evolution was elucidated by observing the variation of the deposited SiC void volume at the overlap interface. The dual inhomogeneity of SiC bonding layer was quantitatively characterized utilizing the average failure rate and determination coefficient. The coupling influence mechanism of prefabricated bottom hole size and online connection process on the final assembly clearance was revealed.
ISSN:1359-835X
DOI:10.1016/j.compositesa.2024.108417