Loading…

Design, analysis and optimization of anisogrid composite lattice conical shells

A methodology for structural analysis and optimal design of conical anisogrid composite lattice shell structures subject to different external loads concurrently applied and multiple stiffness constraints is presented. The critical buckling load of the anisogrid lattice conical structure is exactly...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Engineering, 2018-10, Vol.150, p.184-195
Main Authors: Belardi, Valerio G., Fanelli, Pierluigi, Vivio, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A methodology for structural analysis and optimal design of conical anisogrid composite lattice shell structures subject to different external loads concurrently applied and multiple stiffness constraints is presented. The critical buckling load of the anisogrid lattice conical structure is exactly assessed, independently of the buckling failure mode, by means of a discrete approach. The method makes use of a full FE parametric modeling technique able to manage all the geometrical parameters of the anisogrid composite lattice structure. Additionally, the genetic algorithm NSGA-II is employed to set up an optimization procedure which allows to analyze different sets of geometrical variables, both continuous and discrete, to reach the optimal solution in terms of mass amount and fulfilling of structural and stiffness requirements, aiming at the preliminary design of an actual structure. Numerical case-studies are outlined in order to demonstrate the practical usefulness and versatility of the proposed procedure to industrial cases where the anisogrid lattice conical structure undergoes multiple external loads and various stiffness constraints must be satisfied.
ISSN:1359-8368
1879-1069
DOI:10.1016/j.compositesb.2018.05.036