Loading…

The dynamic thermophysical properties evolution and multi-scale heat transport mechanisms of 2.5D C/SiC composite under high-temperature air oxidation environment

The variations in thermophysical properties and dynamic heat transfer mechanism of 2.5D C/SiC ceramic matrix composites (2.5D C/SiC-CMC) under a high-temperature air oxidation environment are investigated by experiments and numerical simulations. A new multi-scale thermal analysis model of 2.5D C/Si...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Engineering, 2023-08, Vol.263, p.110831, Article 110831
Main Authors: Zhao, Chenwei, Tu, Zecan, Mao, Junkui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123
cites cdi_FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123
container_end_page
container_issue
container_start_page 110831
container_title Composites. Part B, Engineering
container_volume 263
creator Zhao, Chenwei
Tu, Zecan
Mao, Junkui
description The variations in thermophysical properties and dynamic heat transfer mechanism of 2.5D C/SiC ceramic matrix composites (2.5D C/SiC-CMC) under a high-temperature air oxidation environment are investigated by experiments and numerical simulations. A new multi-scale thermal analysis model of 2.5D C/SiC-CMC under high-temperature oxidation is proposed to predict its equivalent thermal conductivity and analysis its multi-scale heat transport mechanisms. The multi-scale thermal analysis model is developed by blending the multi-scale asymptotic thermal analysis method and oxidation kinetics theory, which includes the micro-scale model and mesoscale model. The micro-scale model simulates the oxidation process of the carbon fibers and PyC interface through oxidation kinetics, which predicts the varying equivalent thermal conductivity of yarns with oxidation. The mesoscale model is constructed based on the experimental statistics which reflect the multi-scale structure within the 2.5D C/SiC-CMC with oxidation. The mesoscale model introduces oxidation characteristics by considering dynamic variations in yarn thermal properties. The dynamic thermophysical properties of the 2.5D C/SiC-CMC with oxidation are tested in the experimental study, which verifies that the multi-scale thermal analysis model has highlighted prediction accuracy. The results show that high-temperature oxidation causes significant variations in the dynamic thermal behavior of 2.5D C/SiC-CMC which is critical for the practical thermal protection design of 2.5D C/SiC-CMC hot components in engineering applications.
doi_str_mv 10.1016/j.compositesb.2023.110831
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compositesb_2023_110831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836823003347</els_id><sourcerecordid>S1359836823003347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123</originalsourceid><addsrcrecordid>eNqNkE1u2zAQhYUiAZq_O0wPIIU_lkQuCyVpAgTIoumaoMlRRMMkBZI26uvkpJXjougyqxkM5r1581XVN0oaSmh3u2lM9HPMrmBeN4ww3lBKBKdfqgsqellT0smzpeetrAXvxNfqMucNIWTVcnZRvb9OCPYQtHcGyoTJx3k6ZGf0FuYUZ0zFYQbcx-2uuBhABwt-ty2uzssOwoS6QEk65DmmAh7NpIPLPkMcgTXtHQy3P90A_2LCLlhMMLm3qS7olwu67BKCdgnib2f1xxkMe5di8BjKdXU-6m3Gm7_1qvr1cP86PNbPLz-ehu_PteGMlhrJaNbLs71kvVmtcUWJFNKuKLdUCNu1QvT9kQCTmnKhiezEMmMtZZaPlPGrSp58TYo5JxzVnJzX6aAoUUfYaqP-g62OsNUJ9qIdTlpcAu4dJpWNw2DQuoSmKBvdJ1z-AKrrkcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The dynamic thermophysical properties evolution and multi-scale heat transport mechanisms of 2.5D C/SiC composite under high-temperature air oxidation environment</title><source>ScienceDirect Freedom Collection</source><creator>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</creator><creatorcontrib>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</creatorcontrib><description>The variations in thermophysical properties and dynamic heat transfer mechanism of 2.5D C/SiC ceramic matrix composites (2.5D C/SiC-CMC) under a high-temperature air oxidation environment are investigated by experiments and numerical simulations. A new multi-scale thermal analysis model of 2.5D C/SiC-CMC under high-temperature oxidation is proposed to predict its equivalent thermal conductivity and analysis its multi-scale heat transport mechanisms. The multi-scale thermal analysis model is developed by blending the multi-scale asymptotic thermal analysis method and oxidation kinetics theory, which includes the micro-scale model and mesoscale model. The micro-scale model simulates the oxidation process of the carbon fibers and PyC interface through oxidation kinetics, which predicts the varying equivalent thermal conductivity of yarns with oxidation. The mesoscale model is constructed based on the experimental statistics which reflect the multi-scale structure within the 2.5D C/SiC-CMC with oxidation. The mesoscale model introduces oxidation characteristics by considering dynamic variations in yarn thermal properties. The dynamic thermophysical properties of the 2.5D C/SiC-CMC with oxidation are tested in the experimental study, which verifies that the multi-scale thermal analysis model has highlighted prediction accuracy. The results show that high-temperature oxidation causes significant variations in the dynamic thermal behavior of 2.5D C/SiC-CMC which is critical for the practical thermal protection design of 2.5D C/SiC-CMC hot components in engineering applications.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2023.110831</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>2.5D C/SiC composite ; Dynamic heat transport ; Dynamic thermophysical properties ; High-temperature oxidation ; Multi-scale thermal analysis</subject><ispartof>Composites. Part B, Engineering, 2023-08, Vol.263, p.110831, Article 110831</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123</citedby><cites>FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Chenwei</creatorcontrib><creatorcontrib>Tu, Zecan</creatorcontrib><creatorcontrib>Mao, Junkui</creatorcontrib><title>The dynamic thermophysical properties evolution and multi-scale heat transport mechanisms of 2.5D C/SiC composite under high-temperature air oxidation environment</title><title>Composites. Part B, Engineering</title><description>The variations in thermophysical properties and dynamic heat transfer mechanism of 2.5D C/SiC ceramic matrix composites (2.5D C/SiC-CMC) under a high-temperature air oxidation environment are investigated by experiments and numerical simulations. A new multi-scale thermal analysis model of 2.5D C/SiC-CMC under high-temperature oxidation is proposed to predict its equivalent thermal conductivity and analysis its multi-scale heat transport mechanisms. The multi-scale thermal analysis model is developed by blending the multi-scale asymptotic thermal analysis method and oxidation kinetics theory, which includes the micro-scale model and mesoscale model. The micro-scale model simulates the oxidation process of the carbon fibers and PyC interface through oxidation kinetics, which predicts the varying equivalent thermal conductivity of yarns with oxidation. The mesoscale model is constructed based on the experimental statistics which reflect the multi-scale structure within the 2.5D C/SiC-CMC with oxidation. The mesoscale model introduces oxidation characteristics by considering dynamic variations in yarn thermal properties. The dynamic thermophysical properties of the 2.5D C/SiC-CMC with oxidation are tested in the experimental study, which verifies that the multi-scale thermal analysis model has highlighted prediction accuracy. The results show that high-temperature oxidation causes significant variations in the dynamic thermal behavior of 2.5D C/SiC-CMC which is critical for the practical thermal protection design of 2.5D C/SiC-CMC hot components in engineering applications.</description><subject>2.5D C/SiC composite</subject><subject>Dynamic heat transport</subject><subject>Dynamic thermophysical properties</subject><subject>High-temperature oxidation</subject><subject>Multi-scale thermal analysis</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkE1u2zAQhYUiAZq_O0wPIIU_lkQuCyVpAgTIoumaoMlRRMMkBZI26uvkpJXjougyqxkM5r1581XVN0oaSmh3u2lM9HPMrmBeN4ww3lBKBKdfqgsqellT0smzpeetrAXvxNfqMucNIWTVcnZRvb9OCPYQtHcGyoTJx3k6ZGf0FuYUZ0zFYQbcx-2uuBhABwt-ty2uzssOwoS6QEk65DmmAh7NpIPLPkMcgTXtHQy3P90A_2LCLlhMMLm3qS7olwu67BKCdgnib2f1xxkMe5di8BjKdXU-6m3Gm7_1qvr1cP86PNbPLz-ehu_PteGMlhrJaNbLs71kvVmtcUWJFNKuKLdUCNu1QvT9kQCTmnKhiezEMmMtZZaPlPGrSp58TYo5JxzVnJzX6aAoUUfYaqP-g62OsNUJ9qIdTlpcAu4dJpWNw2DQuoSmKBvdJ1z-AKrrkcU</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Zhao, Chenwei</creator><creator>Tu, Zecan</creator><creator>Mao, Junkui</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230815</creationdate><title>The dynamic thermophysical properties evolution and multi-scale heat transport mechanisms of 2.5D C/SiC composite under high-temperature air oxidation environment</title><author>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2.5D C/SiC composite</topic><topic>Dynamic heat transport</topic><topic>Dynamic thermophysical properties</topic><topic>High-temperature oxidation</topic><topic>Multi-scale thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenwei</creatorcontrib><creatorcontrib>Tu, Zecan</creatorcontrib><creatorcontrib>Mao, Junkui</creatorcontrib><collection>CrossRef</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenwei</au><au>Tu, Zecan</au><au>Mao, Junkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamic thermophysical properties evolution and multi-scale heat transport mechanisms of 2.5D C/SiC composite under high-temperature air oxidation environment</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>263</volume><spage>110831</spage><pages>110831-</pages><artnum>110831</artnum><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>The variations in thermophysical properties and dynamic heat transfer mechanism of 2.5D C/SiC ceramic matrix composites (2.5D C/SiC-CMC) under a high-temperature air oxidation environment are investigated by experiments and numerical simulations. A new multi-scale thermal analysis model of 2.5D C/SiC-CMC under high-temperature oxidation is proposed to predict its equivalent thermal conductivity and analysis its multi-scale heat transport mechanisms. The multi-scale thermal analysis model is developed by blending the multi-scale asymptotic thermal analysis method and oxidation kinetics theory, which includes the micro-scale model and mesoscale model. The micro-scale model simulates the oxidation process of the carbon fibers and PyC interface through oxidation kinetics, which predicts the varying equivalent thermal conductivity of yarns with oxidation. The mesoscale model is constructed based on the experimental statistics which reflect the multi-scale structure within the 2.5D C/SiC-CMC with oxidation. The mesoscale model introduces oxidation characteristics by considering dynamic variations in yarn thermal properties. The dynamic thermophysical properties of the 2.5D C/SiC-CMC with oxidation are tested in the experimental study, which verifies that the multi-scale thermal analysis model has highlighted prediction accuracy. The results show that high-temperature oxidation causes significant variations in the dynamic thermal behavior of 2.5D C/SiC-CMC which is critical for the practical thermal protection design of 2.5D C/SiC-CMC hot components in engineering applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2023.110831</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2023-08, Vol.263, p.110831, Article 110831
issn 1359-8368
1879-1069
language eng
recordid cdi_crossref_primary_10_1016_j_compositesb_2023_110831
source ScienceDirect Freedom Collection
subjects 2.5D C/SiC composite
Dynamic heat transport
Dynamic thermophysical properties
High-temperature oxidation
Multi-scale thermal analysis
title The dynamic thermophysical properties evolution and multi-scale heat transport mechanisms of 2.5D C/SiC composite under high-temperature air oxidation environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamic%20thermophysical%20properties%20evolution%20and%20multi-scale%20heat%20transport%20mechanisms%20of%202.5D%20C/SiC%20composite%20under%20high-temperature%20air%20oxidation%20environment&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Zhao,%20Chenwei&rft.date=2023-08-15&rft.volume=263&rft.spage=110831&rft.pages=110831-&rft.artnum=110831&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2023.110831&rft_dat=%3Celsevier_cross%3ES1359836823003347%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-e0fcb0697927c4be410989d413d188d658877836829a138a09685882512d3f123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true