Loading…

Significant reduction of grain size and texture intensity in laser powder bed fusion fabricated nickel-based superalloy by increasing constitutional supercooling

Coarse columnar grains are always present in nickel-based superalloys fabricated by laser powder bed fusion (LPBF), which not only causes anisotropy in mechanical properties, but also increases the hot cracking susceptibility of the alloys. Generally, the addition of nucleating agents is a common co...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Engineering, 2023-11, Vol.266, p.111040, Article 111040
Main Authors: Zhao, Yanan, Ma, Teng, Gao, Zhengjiang, Feng, Yiyu, Li, Chong, Guo, Qianying, Ma, Zongqing, Liu, Yongchang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coarse columnar grains are always present in nickel-based superalloys fabricated by laser powder bed fusion (LPBF), which not only causes anisotropy in mechanical properties, but also increases the hot cracking susceptibility of the alloys. Generally, the addition of nucleating agents is a common consideration for grain refinement. However, the intrinsic ultra-high thermal gradient and cooling rate of the LPBF process result in significant differences in grain nucleation and growth compared to conventional casting. The ultra-high thermal gradient of the LPBF process severely inhibits constitutional supercooling, which significantly reduces the heterogeneous nucleation efficiency of nickel-based superalloys. In this work, we introduced Zr into Haynes 230 alloy to improve constitutional supercooling of the LPBF molten pool during solidification and investigated the individual/synergistic effects of nucleating agent (TiC particles) and solute (Zr atoms) addition on the grain refinement of Haynes 230 alloy. It was found that the columnar grain size and texture intensity of LPBF fabricated Haynes 230 alloys were dramatically decreased with Zr and TiC co-addition, which obviously improved the mechanical properties as well as weakened its anisotropy. Our work revealed that inhibition of cell epitaxial growth and promotion of cell nucleation are necessary conditions to refine the grain size of LPBF fabricated nickel-based superalloys. Solutes with high growth restriction factor (Q value), such as Zr in our work, can rapidly generate constitutional supercooling, thereby obviously improving the heterogeneous nucleation efficiency of nucleating agents in nickel-based superalloy during the LPBF process. [Display omitted]
ISSN:1359-8368
1879-1069
DOI:10.1016/j.compositesb.2023.111040