Loading…

Scalable production of robust and creep resistant ultra-high filled wood-plastic composites

With the widespread use of wood-based materials in human life, the availability of wood resources has gradually decreased. The use of low-value wood that does not require chemical adhesives can address the depletion of wood resources used to prepare wood-based composites. However, the development of...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Engineering, 2025-01, Vol.289, p.111937, Article 111937
Main Authors: Yang, An, Liao, Zhengyu, Xu, Zesheng, Liu, Tian, Fang, Yiqun, Wang, Weihong, Xu, Min, Song, Yongming, Wang, Qingwen, Li, Yao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the widespread use of wood-based materials in human life, the availability of wood resources has gradually decreased. The use of low-value wood that does not require chemical adhesives can address the depletion of wood resources used to prepare wood-based composites. However, the development of high-strength, low-cost, scalable wood-based composites from low-value wood is challenging. In this study, high-performance ultra-high filled wood-plastic composites (UFWPC) composed of up to 95 wt% wood flour were prepared through cell wall densification and the construction of multiple cross-linked networks via deep cross-fusion. The UFWPC exhibited excellent mechanical properties, with a flexural strength that was 5.9 times higher than that of commercial particleboard, 2.1 times higher than commercial fiberboard, and 2.6 times higher than commercial wood-plastic composites. UFWPC also demonstrated excellent creep resistance, with a creep strain 76.79 % lower than that of commercial wood-plastic composites. Finally, a customizable large-scale commercial continuous flat-pressing system was established to produce UFWPC. The highly efficient preparation of UFWPC makes it an excellent alternative to commercial wood-plastic composites, particleboard, and fiberboard. This approach provides a promising valorization and sustainability method for recycling plastics and low-value wood. [Display omitted] •Wood-plastic composites with an ultra-high filling amount of wood flour (up to 95 wt%) were prepared.•Cell wall collapse and multiple cross-linked networks endowed, the prepared wood-plastic composites exhibited excellent mechanical properties and creep resistance.•A customized flat-pressing system was proposed to facilitate the large-scale continuous production of wood-plastic composites.
ISSN:1359-8368
DOI:10.1016/j.compositesb.2024.111937