Loading…
Two-scale structural mechanical modeling of long fiber reinforced thermoplastics
The mechanical properties of long fiber reinforced thermoplastics (LFT), which highly depend on the fiber orientation induced through manufacturing on a direct LFT line, are predicted for compression molded rectangular plates. Therefore, three two-scale structural mechanical simulation schemes are a...
Saved in:
Published in: | Composites science and technology 2015-09, Vol.117, p.159-167 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanical properties of long fiber reinforced thermoplastics (LFT), which highly depend on the fiber orientation induced through manufacturing on a direct LFT line, are predicted for compression molded rectangular plates. Therefore, three two-scale structural mechanical simulation schemes are applied and discussed: a two-step approach, the Mori-Tanaka scheme and the self-consistent method. Fiber orientation tensors based on measured micro computed tomography data of selected samples as well as on filling simulations are used for the determination of mechanical properties, as e.g. the storage modulus. The results have been compared with dynamic mechanical analysis measurements of tensile specimens. The influence of the initial strand position on the effective mechanical properties of the plate and the variation of those are examined. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2015.05.020 |