Loading…

On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species

The present study concerns the development of a new class of carbon fiber reinforced polymers (CFRPs) with a nano-modified matrix based on graphene nano-species. The premium target is the increase of the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species u...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2015-10, Vol.118, p.217-225
Main Authors: Kostagiannakopoulou, C., Loutas, T.H., Sotiriadis, G., Markou, A., Kostopoulos, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study concerns the development of a new class of carbon fiber reinforced polymers (CFRPs) with a nano-modified matrix based on graphene nano-species. The premium target is the increase of the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species under mode I loading. An in-house developed methodology for the dispersion of the nano-fillers and the manufacturing of nano-doped prepregs is analytically described. Three different kinds of CFRP plates, one with neat matrix and two doped with graphene nano-platelets or graphene oxide were manufactured. Several double-cantilever beam coupons were tested for interlaminar mode I fracture toughness characterization under simultaneous recording of Acoustic Emission (AE) activity. The nano-doped composites exhibit a significant increase of the interlaminar strain energy release rate GIC of the order of 50% for the case of graphene nano-platelets. AE findings combined with extensive scanning electron microscopy (SEM) attempt to delineate the fracture process variations and the involved micro-mechanisms at a meso-scale level that explain the differences in the crack propagation process.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2015.08.017