Loading…
Polymer bonded explosives with highly tunable creep resistance based on segmented polyurethane copolymers with different hard segment contents
In this research, a group of segmented polyurethane (PU) copolymers with different hard segment (HS) contents were successfully synthesized. The microstructure of the PU copolymers was characterized via Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), dynamic...
Saved in:
Published in: | Composites science and technology 2017-07, Vol.146, p.10-19 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, a group of segmented polyurethane (PU) copolymers with different hard segment (HS) contents were successfully synthesized. The microstructure of the PU copolymers was characterized via Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and small-angle neutron scattering (SANS). Then, the PU copolymers were selected as polymer binder for coating an insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) to prepare polymer bonded explosives (PBXs). When the HS concentration of PU copolymers increased from 14 to 34 wt %, a 14.6 times increase in the creep rupture time of PBXs under 60 °C/3 MPa and a 52.3% decrease in the steady-state creep strain rate under 60 °C/1 MPa were observed. The experimental results indicated that a wide variety of structure and properties of PU copolymer could be customizable through the adjustment of the HS contents, and consequently, provided an efficient route to tune the creep performance of the PBXs over a wide range. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2017.04.008 |