Loading…

A highly efficient self-consistent clustering analysis method with field refinement capability for the mesoscale damage behavior of 3D woven composites

To effectively balance the accuracy and efficiency in solving high-dimensional damage problems, a self-consistent clustering analysis framework with field refinement capability (RESCA) incorporating a mesoscale damage model, is developed to investigate the mesoscale failure behavior of 3D woven comp...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2024-06, Vol.252, p.110609, Article 110609
Main Authors: Wu, Siyang, Guo, Licheng, Li, Zhixing, Zheng, Tao, Huang, Jinzhao, Han, Xiaojian, Jia, Fenghao, Man, Shihan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c265t-e77f0d7c9f710d38b56ba3ccd54580f69bde100d1570495b612fd4d49443bc153
container_end_page
container_issue
container_start_page 110609
container_title Composites science and technology
container_volume 252
creator Wu, Siyang
Guo, Licheng
Li, Zhixing
Zheng, Tao
Huang, Jinzhao
Han, Xiaojian
Jia, Fenghao
Man, Shihan
description To effectively balance the accuracy and efficiency in solving high-dimensional damage problems, a self-consistent clustering analysis framework with field refinement capability (RESCA) incorporating a mesoscale damage model, is developed to investigate the mesoscale failure behavior of 3D woven composites (3DWCs). The RESCA method includes three stages: offline stage, online stage and field refinement stage integrating damage information. In the third stage, a damage-related field refinement framework is proposed to achieve cluster-based field dehomogenization and efficiently reconstruct the voxel-based field information. The results indicate that the RESCA method can accurately predict the local stress concentration, the voxel-based damage field distribution and the damage accumulation process, which are not available with the traditional SCA method. Importantly, the RESCA method can improve the computational efficiency by 25∼55 times compared to the finite element analysis (FEA) method. The RESCA method has double advantages in the efficiency and accuracy for the damage analysis of 3DWCs. [Display omitted]
doi_str_mv 10.1016/j.compscitech.2024.110609
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compscitech_2024_110609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353824001799</els_id><sourcerecordid>S0266353824001799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-e77f0d7c9f710d38b56ba3ccd54580f69bde100d1570495b612fd4d49443bc153</originalsourceid><addsrcrecordid>eNqNkEtOwzAQhi0EEqVwB3OAhHESJ_WyKk8JiQ2sLcceN66SuIpNq5yE65JQFixZzfMfzf8RcssgZcDKu12qfbcP2kXUTZpBVqSMQQnijCzYqhIJAw7nZAFZWSY5z1eX5CqEHQBUXGQL8rWmjds27UjRWqcd9pEGbG2ifR9ciHOt288pGVy_papX7Tj1aYex8YYeXWyoddgaOqB1PXY_ArVXtWtdHKn1A40NTvvBB61apEZ1aou0xkYd3DT1lub39OgP2NPZiw-Tl3BNLqxqA978xiX5eHx43zwnr29PL5v1a6KzkscEq8qCqbSwFQOTr2pe1irX2vCCr8CWojbIAAzjFRSC1yXLrClMIYoirzXj-ZKI0109-BAmD3I_uE4No2QgZ8JyJ_8QljNheSI8aTcnLU4PHhwOMswANRo3oI7SePePK99kFo7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A highly efficient self-consistent clustering analysis method with field refinement capability for the mesoscale damage behavior of 3D woven composites</title><source>Elsevier</source><creator>Wu, Siyang ; Guo, Licheng ; Li, Zhixing ; Zheng, Tao ; Huang, Jinzhao ; Han, Xiaojian ; Jia, Fenghao ; Man, Shihan</creator><creatorcontrib>Wu, Siyang ; Guo, Licheng ; Li, Zhixing ; Zheng, Tao ; Huang, Jinzhao ; Han, Xiaojian ; Jia, Fenghao ; Man, Shihan</creatorcontrib><description>To effectively balance the accuracy and efficiency in solving high-dimensional damage problems, a self-consistent clustering analysis framework with field refinement capability (RESCA) incorporating a mesoscale damage model, is developed to investigate the mesoscale failure behavior of 3D woven composites (3DWCs). The RESCA method includes three stages: offline stage, online stage and field refinement stage integrating damage information. In the third stage, a damage-related field refinement framework is proposed to achieve cluster-based field dehomogenization and efficiently reconstruct the voxel-based field information. The results indicate that the RESCA method can accurately predict the local stress concentration, the voxel-based damage field distribution and the damage accumulation process, which are not available with the traditional SCA method. Importantly, the RESCA method can improve the computational efficiency by 25∼55 times compared to the finite element analysis (FEA) method. The RESCA method has double advantages in the efficiency and accuracy for the damage analysis of 3DWCs. [Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2024.110609</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Polymer-matrix composites (PMCs) ; B. Mechanical properties ; C. Computational mechanics ; C. Damage mechanics</subject><ispartof>Composites science and technology, 2024-06, Vol.252, p.110609, Article 110609</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-e77f0d7c9f710d38b56ba3ccd54580f69bde100d1570495b612fd4d49443bc153</cites><orcidid>0000-0003-4870-3058 ; 0000-0002-7834-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Siyang</creatorcontrib><creatorcontrib>Guo, Licheng</creatorcontrib><creatorcontrib>Li, Zhixing</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Huang, Jinzhao</creatorcontrib><creatorcontrib>Han, Xiaojian</creatorcontrib><creatorcontrib>Jia, Fenghao</creatorcontrib><creatorcontrib>Man, Shihan</creatorcontrib><title>A highly efficient self-consistent clustering analysis method with field refinement capability for the mesoscale damage behavior of 3D woven composites</title><title>Composites science and technology</title><description>To effectively balance the accuracy and efficiency in solving high-dimensional damage problems, a self-consistent clustering analysis framework with field refinement capability (RESCA) incorporating a mesoscale damage model, is developed to investigate the mesoscale failure behavior of 3D woven composites (3DWCs). The RESCA method includes three stages: offline stage, online stage and field refinement stage integrating damage information. In the third stage, a damage-related field refinement framework is proposed to achieve cluster-based field dehomogenization and efficiently reconstruct the voxel-based field information. The results indicate that the RESCA method can accurately predict the local stress concentration, the voxel-based damage field distribution and the damage accumulation process, which are not available with the traditional SCA method. Importantly, the RESCA method can improve the computational efficiency by 25∼55 times compared to the finite element analysis (FEA) method. The RESCA method has double advantages in the efficiency and accuracy for the damage analysis of 3DWCs. [Display omitted]</description><subject>A. Polymer-matrix composites (PMCs)</subject><subject>B. Mechanical properties</subject><subject>C. Computational mechanics</subject><subject>C. Damage mechanics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkEtOwzAQhi0EEqVwB3OAhHESJ_WyKk8JiQ2sLcceN66SuIpNq5yE65JQFixZzfMfzf8RcssgZcDKu12qfbcP2kXUTZpBVqSMQQnijCzYqhIJAw7nZAFZWSY5z1eX5CqEHQBUXGQL8rWmjds27UjRWqcd9pEGbG2ifR9ciHOt288pGVy_papX7Tj1aYex8YYeXWyoddgaOqB1PXY_ArVXtWtdHKn1A40NTvvBB61apEZ1aou0xkYd3DT1lub39OgP2NPZiw-Tl3BNLqxqA978xiX5eHx43zwnr29PL5v1a6KzkscEq8qCqbSwFQOTr2pe1irX2vCCr8CWojbIAAzjFRSC1yXLrClMIYoirzXj-ZKI0109-BAmD3I_uE4No2QgZ8JyJ_8QljNheSI8aTcnLU4PHhwOMswANRo3oI7SePePK99kFo7s</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>Wu, Siyang</creator><creator>Guo, Licheng</creator><creator>Li, Zhixing</creator><creator>Zheng, Tao</creator><creator>Huang, Jinzhao</creator><creator>Han, Xiaojian</creator><creator>Jia, Fenghao</creator><creator>Man, Shihan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4870-3058</orcidid><orcidid>https://orcid.org/0000-0002-7834-1978</orcidid></search><sort><creationdate>20240616</creationdate><title>A highly efficient self-consistent clustering analysis method with field refinement capability for the mesoscale damage behavior of 3D woven composites</title><author>Wu, Siyang ; Guo, Licheng ; Li, Zhixing ; Zheng, Tao ; Huang, Jinzhao ; Han, Xiaojian ; Jia, Fenghao ; Man, Shihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-e77f0d7c9f710d38b56ba3ccd54580f69bde100d1570495b612fd4d49443bc153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A. Polymer-matrix composites (PMCs)</topic><topic>B. Mechanical properties</topic><topic>C. Computational mechanics</topic><topic>C. Damage mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Siyang</creatorcontrib><creatorcontrib>Guo, Licheng</creatorcontrib><creatorcontrib>Li, Zhixing</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Huang, Jinzhao</creatorcontrib><creatorcontrib>Han, Xiaojian</creatorcontrib><creatorcontrib>Jia, Fenghao</creatorcontrib><creatorcontrib>Man, Shihan</creatorcontrib><collection>CrossRef</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Siyang</au><au>Guo, Licheng</au><au>Li, Zhixing</au><au>Zheng, Tao</au><au>Huang, Jinzhao</au><au>Han, Xiaojian</au><au>Jia, Fenghao</au><au>Man, Shihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly efficient self-consistent clustering analysis method with field refinement capability for the mesoscale damage behavior of 3D woven composites</atitle><jtitle>Composites science and technology</jtitle><date>2024-06-16</date><risdate>2024</risdate><volume>252</volume><spage>110609</spage><pages>110609-</pages><artnum>110609</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>To effectively balance the accuracy and efficiency in solving high-dimensional damage problems, a self-consistent clustering analysis framework with field refinement capability (RESCA) incorporating a mesoscale damage model, is developed to investigate the mesoscale failure behavior of 3D woven composites (3DWCs). The RESCA method includes three stages: offline stage, online stage and field refinement stage integrating damage information. In the third stage, a damage-related field refinement framework is proposed to achieve cluster-based field dehomogenization and efficiently reconstruct the voxel-based field information. The results indicate that the RESCA method can accurately predict the local stress concentration, the voxel-based damage field distribution and the damage accumulation process, which are not available with the traditional SCA method. Importantly, the RESCA method can improve the computational efficiency by 25∼55 times compared to the finite element analysis (FEA) method. The RESCA method has double advantages in the efficiency and accuracy for the damage analysis of 3DWCs. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2024.110609</doi><orcidid>https://orcid.org/0000-0003-4870-3058</orcidid><orcidid>https://orcid.org/0000-0002-7834-1978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2024-06, Vol.252, p.110609, Article 110609
issn 0266-3538
1879-1050
language eng
recordid cdi_crossref_primary_10_1016_j_compscitech_2024_110609
source Elsevier
subjects A. Polymer-matrix composites (PMCs)
B. Mechanical properties
C. Computational mechanics
C. Damage mechanics
title A highly efficient self-consistent clustering analysis method with field refinement capability for the mesoscale damage behavior of 3D woven composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20efficient%20self-consistent%20clustering%20analysis%20method%20with%20field%20refinement%20capability%20for%20the%20mesoscale%20damage%20behavior%20of%203D%20woven%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Wu,%20Siyang&rft.date=2024-06-16&rft.volume=252&rft.spage=110609&rft.pages=110609-&rft.artnum=110609&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2024.110609&rft_dat=%3Celsevier_cross%3ES0266353824001799%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-e77f0d7c9f710d38b56ba3ccd54580f69bde100d1570495b612fd4d49443bc153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true