Loading…
Elastostatics of laminated and functionally graded sandwich cylindrical shells with two refined higher order models
Elastostatics of laminated and functionally graded (FG) sandwich open cylindrical shells is studied using a refined higher order shear and normal deformation theory. Displacement based approach with twelve middle surface displacement parameters representing bending and membrane response of cylindric...
Saved in:
Published in: | Composite structures 2017-12, Vol.182, p.505-523 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Elastostatics of laminated and functionally graded (FG) sandwich open cylindrical shells is studied using a refined higher order shear and normal deformation theory. Displacement based approach with twelve middle surface displacement parameters representing bending and membrane response of cylindrical shell is considered. An extended thickness criterion, (h/R)2≪1, is used to make the present theory more reliable over large range of thickness ratios of shell. Basic equations are obtained using minimum potential energy principle and solved subsequently with Navier solution method for cylindrical shells with all edges diaphragm supported. Two kinds of FG sandwich panels are considered having FG layer with Voigt’s rule of mixture following power law gradation of volume fraction. Results show an excellent accuracy with the three dimensional results available in literature for laminated shells. Also, superiority of present formulation over other higher order theories is shown by carrying out a number of comparative studies. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2017.09.051 |