Loading…

Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites

Despite the advantages offered by natural fibre-based thermoplastic composites in terms of environmental impact and cost, their mechanical performance is generally lower than that of synthetic counterparts. Hybridisation with mineral fibres (basalt) can broaden the industrial applications of natural...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2018-03, Vol.188, p.394-406
Main Authors: Sarasini, Fabrizio, Tirillò, Jacopo, Sergi, Claudia, Seghini, Maria Carolina, Cozzarini, Luca, Graupner, Nina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the advantages offered by natural fibre-based thermoplastic composites in terms of environmental impact and cost, their mechanical performance is generally lower than that of synthetic counterparts. Hybridisation with mineral fibres (basalt) can broaden the industrial applications of natural fibre reinforced composites. The present study focused on the performance of injection-moulded short basalt fibre, hemp fibre and hemp/basalt fibre hybrid high density polyethylene (HDPE) composites. Effects of a maleated coupling agent on the thermal and mechanical properties of the resulting composites were evaluated as a function of the fibre mass fraction. Hybridisation of hemp fibres with basalt fibres was found to significantly increase the mechanical properties and the crystallinity of hemp-fibre reinforced composites thus suggesting that short hemp/basalt fibre hybrid HDPE composites are promising candidates for semi-structural applications. Additionally, a sizing removal procedure mimicking the conditions experienced in an end-of-life composite thermal recycling process was defined and discussed in terms of residual mechanical properties of basalt/HDPE composites.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2018.01.046