Loading…
Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete
This paper describes the investigation of the synthesis and improvement of the mechanical properties of quaternary epoxy-based polymer concrete (PC) using basalt fiber and clay nanoparticles. First, the effect of chopped basalt fiber on the compressive, flexural, splitting tensile and impact strengt...
Saved in:
Published in: | Composite structures 2018-05, Vol.191, p.231-238 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes the investigation of the synthesis and improvement of the mechanical properties of quaternary epoxy-based polymer concrete (PC) using basalt fiber and clay nanoparticles. First, the effect of chopped basalt fiber on the compressive, flexural, splitting tensile and impact strengths as well as the effect of different temperatures (up to 250 °C) on the strength of fiber reinforced PC were investigated experimentally. Basalt fiber improved the mechanical properties and increased the thermal stability of PC. In the next step, the effect of nanoclay particles on the mechanical properties and the effect of high temperatures (up to 250 °C) on the strength of basalt fiber-reinforced PC (BFRPC) were analyzed experimentally. Nanoparticles increase the compressive, flexural and impact strength as well as the thermal stability but decrease the tensile strength of the PC. SEM analysis was performed to study the fracture surface and morphology of various concrete specimens. The resulting polymer nanocomposite will be used as a lightweight polymer concrete with high mechanical strength and thermal stability. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2018.02.063 |