Loading…
A numerical micro-mechanical study on damage induced by the curing process in carbon/epoxy unidirectional material
A numerical framework for the determination of the damage, the stress and the inelastic strain field induced by the curing process for unidirectional carbon/epoxy composite material is proposed. The approach integrates a network model for the estimation of the matrix shrinkage and elastic properties...
Saved in:
Published in: | Composite structures 2019-02, Vol.210, p.755-766 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A numerical framework for the determination of the damage, the stress and the inelastic strain field induced by the curing process for unidirectional carbon/epoxy composite material is proposed. The approach integrates a network model for the estimation of the matrix shrinkage and elastic properties evolution during curing with damageable elasto-plastic constitutive equations. Simulations of the curing process and of the cured material transverse mechanical response are carried out. A sensitivity study is realised for different volume fractions and matrix tensile strengths for single fiber models. Analyses of Representative Volume Elements (RVEs) with randomly distributed fibers are also performed and a comparison with the ideally cured version of the same model is used to highlight the importance of considering the curing process effects in micromechanical models. The proposed framework, with a proper calibration of the constituents, contributes to the enhancement of the fidelity of numerical micromechanics for this class of materials. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2018.11.059 |