Loading…

An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings

We present a uniaxial phenomenological model to accurately predict the complex hysteretic behavior of bolted steel reinforced elastomeric bearings and unbonded fiber reinforced elastomeric bearings. The proposed model is based on a set of only five parameters, directly associated with the graphical...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2019-03, Vol.211, p.196-212
Main Authors: Vaiana, Nicolò, Sessa, Salvatore, Marmo, Francesco, Rosati, Luciano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a uniaxial phenomenological model to accurately predict the complex hysteretic behavior of bolted steel reinforced elastomeric bearings and unbonded fiber reinforced elastomeric bearings. The proposed model is based on a set of only five parameters, directly associated with the graphical properties of the hysteresis loop, leads to the solution of an algebraic equation for the evaluation of the isolator restoring force, requires only one history variable, and can be easily implemented in a computer program. The proposed model is validated by means of experimental tests and numerical simulations. In particular, the results predicted analytically are compared with some experimental results selected from the literature. Furthermore, numerical accuracy and computational efficiency of the model are assessed by performing nonlinear time history analyses on a single degree of freedom mechanical system and comparing the results with those associated with a modified version of the celebrated Bouc-Wen model.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2018.12.017