Loading…

Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme

This work investigates the effect of a thermal shock loading on the rotating multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) truncated conical shells. The problem is tackled numerically according to the Lord-Shulman (L-S) thermoelastic theory. The multilayer FG-GPLR...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2020-03, Vol.235, p.111707, Article 111707
Main Authors: Heydarpour, Yasin, Malekzadeh, Parviz, Dimitri, Rossana, Tornabene, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503
cites cdi_FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503
container_end_page
container_issue
container_start_page 111707
container_title Composite structures
container_volume 235
creator Heydarpour, Yasin
Malekzadeh, Parviz
Dimitri, Rossana
Tornabene, Francesco
description This work investigates the effect of a thermal shock loading on the rotating multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) truncated conical shells. The problem is tackled numerically according to the Lord-Shulman (L-S) thermoelastic theory. The multilayer FG-GPLRC conical shells are decomposed into a set of co-axial nanocomposite shell layers, to capture accurately the variation of the thermoelastic field variables due to the layerwise variation of the material properties. The transformed differential quadrature method (TDQM) and a multi-step time integration scheme based on a non-uniform rational B-spline (NURBS) interpolation is applied to discretize the thermoelastic equations together with the related boundary conditions and compatibility conditions at the interface of two neighboring layers. After a preliminary validation of the approach, a parametric study aims at investigating the effect of different graphene platelets (GPLs) distribution patterns, GPLs weight fraction and dimension ratios, as well as the effect of the shell angular velocity and geometry parameters on the thermoelastic response of the system. It is verified that the addition of a small amount of GPLs in the polymer matrix increases significantly the heat wave speed, affects the thermoelastic field variables, and decreases the period of oscillatory portions of the mechanical field variables.
doi_str_mv 10.1016/j.compstruct.2019.111707
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2019_111707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822319333458</els_id><sourcerecordid>S0263822319333458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD_6BBI_dOs6SFlqQyquEdeQ4E-rKSSrbRerfk6pILFmN5nHvHR1CKLAUGMjbbWr6dhei35uYcgZ5CgAZy87ICFSWJ8DU9JyMGJciUZyLS3IVwpYxpiYAIxKLDfq2R6dDtIbqTrtDsIH2DfV91NF2X7Tdu2idPqCni2WyfFut53TI64yOWFPTd9ZoR8MGnQu00mEY9h3Vw2a_c0NT3L8_Jy-f69kHDWaDLV6Ti0a7gDe_dUyKxUMxf0xWr8un-d0qMQJUTHLUmOV5LbXkkmshGEyVYqLWmWTQcFFNpBZ1VTUNz7mqWCMESjTVxABMmRgTdbI1vg_BY1PuvG21P5TAyiO8clv-wSuP8MoTvEE6O0lxeO_boi-DsdgZrK3H4bbu7f8mP0oDftY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Heydarpour, Yasin ; Malekzadeh, Parviz ; Dimitri, Rossana ; Tornabene, Francesco</creator><creatorcontrib>Heydarpour, Yasin ; Malekzadeh, Parviz ; Dimitri, Rossana ; Tornabene, Francesco</creatorcontrib><description>This work investigates the effect of a thermal shock loading on the rotating multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) truncated conical shells. The problem is tackled numerically according to the Lord-Shulman (L-S) thermoelastic theory. The multilayer FG-GPLRC conical shells are decomposed into a set of co-axial nanocomposite shell layers, to capture accurately the variation of the thermoelastic field variables due to the layerwise variation of the material properties. The transformed differential quadrature method (TDQM) and a multi-step time integration scheme based on a non-uniform rational B-spline (NURBS) interpolation is applied to discretize the thermoelastic equations together with the related boundary conditions and compatibility conditions at the interface of two neighboring layers. After a preliminary validation of the approach, a parametric study aims at investigating the effect of different graphene platelets (GPLs) distribution patterns, GPLs weight fraction and dimension ratios, as well as the effect of the shell angular velocity and geometry parameters on the thermoelastic response of the system. It is verified that the addition of a small amount of GPLs in the polymer matrix increases significantly the heat wave speed, affects the thermoelastic field variables, and decreases the period of oscillatory portions of the mechanical field variables.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2019.111707</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Functionally graded ; Graphene platelets reinforced composite ; Lord-Shulman thermoelasticity ; Multi-step time integration ; Rotating conical shells ; TDQM</subject><ispartof>Composite structures, 2020-03, Vol.235, p.111707, Article 111707</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503</citedby><cites>FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Heydarpour, Yasin</creatorcontrib><creatorcontrib>Malekzadeh, Parviz</creatorcontrib><creatorcontrib>Dimitri, Rossana</creatorcontrib><creatorcontrib>Tornabene, Francesco</creatorcontrib><title>Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme</title><title>Composite structures</title><description>This work investigates the effect of a thermal shock loading on the rotating multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) truncated conical shells. The problem is tackled numerically according to the Lord-Shulman (L-S) thermoelastic theory. The multilayer FG-GPLRC conical shells are decomposed into a set of co-axial nanocomposite shell layers, to capture accurately the variation of the thermoelastic field variables due to the layerwise variation of the material properties. The transformed differential quadrature method (TDQM) and a multi-step time integration scheme based on a non-uniform rational B-spline (NURBS) interpolation is applied to discretize the thermoelastic equations together with the related boundary conditions and compatibility conditions at the interface of two neighboring layers. After a preliminary validation of the approach, a parametric study aims at investigating the effect of different graphene platelets (GPLs) distribution patterns, GPLs weight fraction and dimension ratios, as well as the effect of the shell angular velocity and geometry parameters on the thermoelastic response of the system. It is verified that the addition of a small amount of GPLs in the polymer matrix increases significantly the heat wave speed, affects the thermoelastic field variables, and decreases the period of oscillatory portions of the mechanical field variables.</description><subject>Functionally graded</subject><subject>Graphene platelets reinforced composite</subject><subject>Lord-Shulman thermoelasticity</subject><subject>Multi-step time integration</subject><subject>Rotating conical shells</subject><subject>TDQM</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwD_6BBI_dOs6SFlqQyquEdeQ4E-rKSSrbRerfk6pILFmN5nHvHR1CKLAUGMjbbWr6dhei35uYcgZ5CgAZy87ICFSWJ8DU9JyMGJciUZyLS3IVwpYxpiYAIxKLDfq2R6dDtIbqTrtDsIH2DfV91NF2X7Tdu2idPqCni2WyfFut53TI64yOWFPTd9ZoR8MGnQu00mEY9h3Vw2a_c0NT3L8_Jy-f69kHDWaDLV6Ti0a7gDe_dUyKxUMxf0xWr8un-d0qMQJUTHLUmOV5LbXkkmshGEyVYqLWmWTQcFFNpBZ1VTUNz7mqWCMESjTVxABMmRgTdbI1vg_BY1PuvG21P5TAyiO8clv-wSuP8MoTvEE6O0lxeO_boi-DsdgZrK3H4bbu7f8mP0oDftY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Heydarpour, Yasin</creator><creator>Malekzadeh, Parviz</creator><creator>Dimitri, Rossana</creator><creator>Tornabene, Francesco</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme</title><author>Heydarpour, Yasin ; Malekzadeh, Parviz ; Dimitri, Rossana ; Tornabene, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Functionally graded</topic><topic>Graphene platelets reinforced composite</topic><topic>Lord-Shulman thermoelasticity</topic><topic>Multi-step time integration</topic><topic>Rotating conical shells</topic><topic>TDQM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydarpour, Yasin</creatorcontrib><creatorcontrib>Malekzadeh, Parviz</creatorcontrib><creatorcontrib>Dimitri, Rossana</creatorcontrib><creatorcontrib>Tornabene, Francesco</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydarpour, Yasin</au><au>Malekzadeh, Parviz</au><au>Dimitri, Rossana</au><au>Tornabene, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme</atitle><jtitle>Composite structures</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>235</volume><spage>111707</spage><pages>111707-</pages><artnum>111707</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>This work investigates the effect of a thermal shock loading on the rotating multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) truncated conical shells. The problem is tackled numerically according to the Lord-Shulman (L-S) thermoelastic theory. The multilayer FG-GPLRC conical shells are decomposed into a set of co-axial nanocomposite shell layers, to capture accurately the variation of the thermoelastic field variables due to the layerwise variation of the material properties. The transformed differential quadrature method (TDQM) and a multi-step time integration scheme based on a non-uniform rational B-spline (NURBS) interpolation is applied to discretize the thermoelastic equations together with the related boundary conditions and compatibility conditions at the interface of two neighboring layers. After a preliminary validation of the approach, a parametric study aims at investigating the effect of different graphene platelets (GPLs) distribution patterns, GPLs weight fraction and dimension ratios, as well as the effect of the shell angular velocity and geometry parameters on the thermoelastic response of the system. It is verified that the addition of a small amount of GPLs in the polymer matrix increases significantly the heat wave speed, affects the thermoelastic field variables, and decreases the period of oscillatory portions of the mechanical field variables.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2019.111707</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2020-03, Vol.235, p.111707, Article 111707
issn 0263-8223
1879-1085
language eng
recordid cdi_crossref_primary_10_1016_j_compstruct_2019_111707
source ScienceDirect Freedom Collection 2022-2024
subjects Functionally graded
Graphene platelets reinforced composite
Lord-Shulman thermoelasticity
Multi-step time integration
Rotating conical shells
TDQM
title Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelastic%20analysis%20of%20rotating%20multilayer%20FG-GPLRC%20truncated%20conical%20shells%20based%20on%20a%20coupled%20TDQM-NURBS%20scheme&rft.jtitle=Composite%20structures&rft.au=Heydarpour,%20Yasin&rft.date=2020-03-01&rft.volume=235&rft.spage=111707&rft.pages=111707-&rft.artnum=111707&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2019.111707&rft_dat=%3Celsevier_cross%3ES0263822319333458%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-9eae799d6a6262a330158803da7601f23b46a3dbbff2928b0f33e6ecb4c11503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true