Loading…

Prediction of debonding growth in two-dimensional RVEs using an extended interface element based on continuum damage mechanics concept

In the present study, a new interface model based on continuum damage mechanics (CDM) is developed to investigate the fiber-matrix interfacial debonding in the composite material. This model differs from Voronoi cell finite element and cohesive zone element method. To this purpose, a 2D classical el...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2020-04, Vol.238, p.111981, Article 111981
Main Authors: Babaei, Ramzan, Farrokhabadi, Amin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, a new interface model based on continuum damage mechanics (CDM) is developed to investigate the fiber-matrix interfacial debonding in the composite material. This model differs from Voronoi cell finite element and cohesive zone element method. To this purpose, a 2D classical elasticity formulation with non-interactive strength-based criteria and complex variable method with non-interactive energy-based criteria are applied for the analysis of the debond onset and propagation in an RVE with a single fiber, respectively. Then, the CDM approach is used to bridge between analytical and numerical methods. The developed model based on CDM is implanted into ANSYS commercial software to compare the accuracy of the proposed method with the obtained results by the cohesive zone model in RVEs containing single and multiple fibers. The admissible matching between the obtained stress-strain responses reveals the capability of the proposed approach to predict the fiber-matrix debonding as a primary damage mode in composite materials.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2020.111981