Loading…
An improved shell-fastener model for modelling C/SiC composite bolted joints with rough surface characteristics
An improved shell-fastener model is proposed to study the mechanical behavior of C/SiC composite bolted joints with the rough surface (millimetric magnitude). Based on the axial compressive experiment, the normal contact stiffness is obtained by a modified fractal normal contact model, which is also...
Saved in:
Published in: | Composite structures 2020-11, Vol.251, p.112516, Article 112516 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An improved shell-fastener model is proposed to study the mechanical behavior of C/SiC composite bolted joints with the rough surface (millimetric magnitude). Based on the axial compressive experiment, the normal contact stiffness is obtained by a modified fractal normal contact model, which is also validated by using a solid FE model and a hybrid FE model (shell-fastener and solid nuts). The equivalent axial stiffness and shear stiffness used in the shell-fastener model for the bolted joints are determined combining with normal contact stiffness. In comparison of the experimental results, the improve shell-fastener model with equivalent stiffness under pre-tightening load can efficiently and accurately describe the in-plane tension of C/SiC composite bolted joints. The proposed model has the potential to study the large C/SiC composite structures with a large number of bolted joints. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2020.112516 |