Loading…

An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips

A computational framework is presented for the delamination propagation analysis in laminated composite strips that combines an extended high-order layerwise model and a spectral finite element with high-order spatial approximation in the plane of the structure. The extended layerwise laminate mecha...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2021-11, Vol.276, p.114452, Article 114452
Main Authors: Siorikis, D.K., Rekatsinas, C.S., Chrysochoidis, N.A., Saravanos, D.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03
cites cdi_FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03
container_end_page
container_issue
container_start_page 114452
container_title Composite structures
container_volume 276
creator Siorikis, D.K.
Rekatsinas, C.S.
Chrysochoidis, N.A.
Saravanos, D.A.
description A computational framework is presented for the delamination propagation analysis in laminated composite strips that combines an extended high-order layerwise model and a spectral finite element with high-order spatial approximation in the plane of the structure. The extended layerwise laminate mechanics approximate the through-thickness fields using Hermite cubic splines, while the discontinuities in displacement induced by a delamination crack are treated as generalized damage degrees of freedom (DOFs). The layerwise mechanics are integrated into a novel spectral strip finite element, which involves integration points collocated with the nodes, thus providing accurate nodal predictions of the interlaminar stresses on the interface and ahead of the delamination crack tip. Strain energy release rate is predicted by adapting the VCCT method to rely exclusively on the damage DOFs. Finally, an iterative solution method is developed that takes advantage of the damaged DOFs to quickly predict the crack propagation without remeshing. The proposed numerical scheme is applied to mode I, II and mixed-mode delamination fracture problems and is validated vs. reference literature solutions, experimental results and standard 2D plane-strain FE models. The numerical results ultimately illustrate the capacity of the present method to provide accurate predictions with moderately coarse meshes and high computational speed.
doi_str_mv 10.1016/j.compstruct.2021.114452
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2021_114452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822321009144</els_id><sourcerecordid>S0263822321009144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKf_IX-gNR9tml7O4RcMvNHrkKYnmtmmJcnc9u_t6MBLrw68h_fh5UEIU5JTQsX9NjdDP8YUdibljDCaU1oUJbtACyqrOqNElpdoQZjgmWSMX6ObGLeEEFlQukCHlcdwSOBbaHGnjxD2LgKOI5gUdIet8y4Bhg568AnboHvYD-Eb2yHgFjrdO6-TGzz-DMM-feHo-l03J87j839in1YO8cSatrox3qIrq7sId-e7RB9Pj-_rl2zz9vy6Xm0yw6lMWVPUAIUpKeFCM1ZVxtq2FqA1Z7ZqZGVrkJrX1DSSUyFazmQtCGtKqQVtCF8iOXNNGGIMYNUYXK_DUVGiTgbVVv0ZVCeDajY4VR_mKkz7fhwEFY0Db6B1YdKj2sH9D_kFAWaDcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips</title><source>ScienceDirect Freedom Collection</source><creator>Siorikis, D.K. ; Rekatsinas, C.S. ; Chrysochoidis, N.A. ; Saravanos, D.A.</creator><creatorcontrib>Siorikis, D.K. ; Rekatsinas, C.S. ; Chrysochoidis, N.A. ; Saravanos, D.A.</creatorcontrib><description>A computational framework is presented for the delamination propagation analysis in laminated composite strips that combines an extended high-order layerwise model and a spectral finite element with high-order spatial approximation in the plane of the structure. The extended layerwise laminate mechanics approximate the through-thickness fields using Hermite cubic splines, while the discontinuities in displacement induced by a delamination crack are treated as generalized damage degrees of freedom (DOFs). The layerwise mechanics are integrated into a novel spectral strip finite element, which involves integration points collocated with the nodes, thus providing accurate nodal predictions of the interlaminar stresses on the interface and ahead of the delamination crack tip. Strain energy release rate is predicted by adapting the VCCT method to rely exclusively on the damage DOFs. Finally, an iterative solution method is developed that takes advantage of the damaged DOFs to quickly predict the crack propagation without remeshing. The proposed numerical scheme is applied to mode I, II and mixed-mode delamination fracture problems and is validated vs. reference literature solutions, experimental results and standard 2D plane-strain FE models. The numerical results ultimately illustrate the capacity of the present method to provide accurate predictions with moderately coarse meshes and high computational speed.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2021.114452</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Delamination ; Fracture ; Interlaminar stresses ; Laminates ; Layerwise mechanics ; Spectral finite elements</subject><ispartof>Composite structures, 2021-11, Vol.276, p.114452, Article 114452</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03</citedby><cites>FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Siorikis, D.K.</creatorcontrib><creatorcontrib>Rekatsinas, C.S.</creatorcontrib><creatorcontrib>Chrysochoidis, N.A.</creatorcontrib><creatorcontrib>Saravanos, D.A.</creatorcontrib><title>An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips</title><title>Composite structures</title><description>A computational framework is presented for the delamination propagation analysis in laminated composite strips that combines an extended high-order layerwise model and a spectral finite element with high-order spatial approximation in the plane of the structure. The extended layerwise laminate mechanics approximate the through-thickness fields using Hermite cubic splines, while the discontinuities in displacement induced by a delamination crack are treated as generalized damage degrees of freedom (DOFs). The layerwise mechanics are integrated into a novel spectral strip finite element, which involves integration points collocated with the nodes, thus providing accurate nodal predictions of the interlaminar stresses on the interface and ahead of the delamination crack tip. Strain energy release rate is predicted by adapting the VCCT method to rely exclusively on the damage DOFs. Finally, an iterative solution method is developed that takes advantage of the damaged DOFs to quickly predict the crack propagation without remeshing. The proposed numerical scheme is applied to mode I, II and mixed-mode delamination fracture problems and is validated vs. reference literature solutions, experimental results and standard 2D plane-strain FE models. The numerical results ultimately illustrate the capacity of the present method to provide accurate predictions with moderately coarse meshes and high computational speed.</description><subject>Delamination</subject><subject>Fracture</subject><subject>Interlaminar stresses</subject><subject>Laminates</subject><subject>Layerwise mechanics</subject><subject>Spectral finite elements</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKf_IX-gNR9tml7O4RcMvNHrkKYnmtmmJcnc9u_t6MBLrw68h_fh5UEIU5JTQsX9NjdDP8YUdibljDCaU1oUJbtACyqrOqNElpdoQZjgmWSMX6ObGLeEEFlQukCHlcdwSOBbaHGnjxD2LgKOI5gUdIet8y4Bhg568AnboHvYD-Eb2yHgFjrdO6-TGzz-DMM-feHo-l03J87j839in1YO8cSatrox3qIrq7sId-e7RB9Pj-_rl2zz9vy6Xm0yw6lMWVPUAIUpKeFCM1ZVxtq2FqA1Z7ZqZGVrkJrX1DSSUyFazmQtCGtKqQVtCF8iOXNNGGIMYNUYXK_DUVGiTgbVVv0ZVCeDajY4VR_mKkz7fhwEFY0Db6B1YdKj2sH9D_kFAWaDcg</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Siorikis, D.K.</creator><creator>Rekatsinas, C.S.</creator><creator>Chrysochoidis, N.A.</creator><creator>Saravanos, D.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211115</creationdate><title>An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips</title><author>Siorikis, D.K. ; Rekatsinas, C.S. ; Chrysochoidis, N.A. ; Saravanos, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delamination</topic><topic>Fracture</topic><topic>Interlaminar stresses</topic><topic>Laminates</topic><topic>Layerwise mechanics</topic><topic>Spectral finite elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siorikis, D.K.</creatorcontrib><creatorcontrib>Rekatsinas, C.S.</creatorcontrib><creatorcontrib>Chrysochoidis, N.A.</creatorcontrib><creatorcontrib>Saravanos, D.A.</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siorikis, D.K.</au><au>Rekatsinas, C.S.</au><au>Chrysochoidis, N.A.</au><au>Saravanos, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips</atitle><jtitle>Composite structures</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>276</volume><spage>114452</spage><pages>114452-</pages><artnum>114452</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>A computational framework is presented for the delamination propagation analysis in laminated composite strips that combines an extended high-order layerwise model and a spectral finite element with high-order spatial approximation in the plane of the structure. The extended layerwise laminate mechanics approximate the through-thickness fields using Hermite cubic splines, while the discontinuities in displacement induced by a delamination crack are treated as generalized damage degrees of freedom (DOFs). The layerwise mechanics are integrated into a novel spectral strip finite element, which involves integration points collocated with the nodes, thus providing accurate nodal predictions of the interlaminar stresses on the interface and ahead of the delamination crack tip. Strain energy release rate is predicted by adapting the VCCT method to rely exclusively on the damage DOFs. Finally, an iterative solution method is developed that takes advantage of the damaged DOFs to quickly predict the crack propagation without remeshing. The proposed numerical scheme is applied to mode I, II and mixed-mode delamination fracture problems and is validated vs. reference literature solutions, experimental results and standard 2D plane-strain FE models. The numerical results ultimately illustrate the capacity of the present method to provide accurate predictions with moderately coarse meshes and high computational speed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2021.114452</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2021-11, Vol.276, p.114452, Article 114452
issn 0263-8223
1879-1085
language eng
recordid cdi_crossref_primary_10_1016_j_compstruct_2021_114452
source ScienceDirect Freedom Collection
subjects Delamination
Fracture
Interlaminar stresses
Laminates
Layerwise mechanics
Spectral finite elements
title An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20layerwise%20spectral%20finite%20element%20framework%20for%20delamination%20growth%20simulation%20in%20laminated%20composite%20strips&rft.jtitle=Composite%20structures&rft.au=Siorikis,%20D.K.&rft.date=2021-11-15&rft.volume=276&rft.spage=114452&rft.pages=114452-&rft.artnum=114452&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2021.114452&rft_dat=%3Celsevier_cross%3ES0263822321009144%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-b49ee4c51036a2277cffd96eaa32f7b87f9e8a391cb83166d3289602b58a61b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true