Loading…
Modelling energy dissipation and hysteresis of woven fabrics with large deformation under single loading-unloading cycle
Based on energy decomposition according to main mesoscopic deformation mechanisms of woven fabrics, a piecewise total-strain model for characterizing their dissipation and hysteresis with finite strain under single loading–unloading cycle is presented. In the piecewise model for single deformation m...
Saved in:
Published in: | Composite structures 2022-01, Vol.279, p.114781, Article 114781 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on energy decomposition according to main mesoscopic deformation mechanisms of woven fabrics, a piecewise total-strain model for characterizing their dissipation and hysteresis with finite strain under single loading–unloading cycle is presented. In the piecewise model for single deformation mode, a loading–unloading hysteresis cycle is decomposed into four deformation states to characterize according to main mesoscopic mechanisms. Strongly non-linear unloading curve is characterized by constructing energetic relation with loading curve. Dissipation is characterized in a total-strain form and history-dependence is characterized by internal variables, namely dissipation ratio factors. The model is implemented with UMAT in ABAQUS. Three experiments namely trellising, bias extension and uniaxial tension in the literature are simulated for model validation. Excellent consistency between simulation results and experimental data is obtained for each test. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2021.114781 |