Loading…

Modelling energy dissipation and hysteresis of woven fabrics with large deformation under single loading-unloading cycle

Based on energy decomposition according to main mesoscopic deformation mechanisms of woven fabrics, a piecewise total-strain model for characterizing their dissipation and hysteresis with finite strain under single loading–unloading cycle is presented. In the piecewise model for single deformation m...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2022-01, Vol.279, p.114781, Article 114781
Main Authors: Li, Zhenkun, Zhou, Helezi, Wang, Yinyu, Zhou, Huamin, Peng, Xiongqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on energy decomposition according to main mesoscopic deformation mechanisms of woven fabrics, a piecewise total-strain model for characterizing their dissipation and hysteresis with finite strain under single loading–unloading cycle is presented. In the piecewise model for single deformation mode, a loading–unloading hysteresis cycle is decomposed into four deformation states to characterize according to main mesoscopic mechanisms. Strongly non-linear unloading curve is characterized by constructing energetic relation with loading curve. Dissipation is characterized in a total-strain form and history-dependence is characterized by internal variables, namely dissipation ratio factors. The model is implemented with UMAT in ABAQUS. Three experiments namely trellising, bias extension and uniaxial tension in the literature are simulated for model validation. Excellent consistency between simulation results and experimental data is obtained for each test.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2021.114781