Loading…

Refined multilayered beam, plate and shell elements based on Jacobi polynomials

In this paper, theories of structures based on hierarchical Jacobi expansions are explored for the static analysis of multilayered beams, plates and shells. They belong to the family of classical orthogonal polynomials. This expansion is employed in the framework of the Carrera Unified Formulation (...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2023-01, Vol.304, p.116275, Article 116275
Main Authors: Carrera, E., Augello, R., Pagani, A., Scano, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863
cites cdi_FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863
container_end_page
container_issue
container_start_page 116275
container_title Composite structures
container_volume 304
creator Carrera, E.
Augello, R.
Pagani, A.
Scano, D.
description In this paper, theories of structures based on hierarchical Jacobi expansions are explored for the static analysis of multilayered beams, plates and shells. They belong to the family of classical orthogonal polynomials. This expansion is employed in the framework of the Carrera Unified Formulation (CUF), which allows to generate finite element stiffness matrices in a straightforward way. CUF allows also to employ both layer-wise and equivalent single layer approaches in order to obtain the desired degree of precision and computational cost. In this work, CUF is exploited for the analysis of one-dimensional beams and two-dimensional plates and shells, and several case studies from the literature are analysed. Displacements, in-plane, transverse and shear stresses are shown. In particular, for some benchmarks, the shear stresses are calculated using the constitutive relations and the stress recovery technique. The obtained results clearly show the convenience of using equivalent single layer models when calculating displacements, in-plane stresses and shear stresses recovered by three-dimensional indefinite equilibrium equations. On the other hand, layer-wise models are able to accurately predict the structural behaviour, even though higher degrees of freedom are needed.
doi_str_mv 10.1016/j.compstruct.2022.116275
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2022_116275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822322010078</els_id><sourcerecordid>S0263822322010078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863</originalsourceid><addsrcrecordid>eNqFkN1KxDAUhIMouK6-Qx7A1vw1TS918ZeFBdHrkKYnmCVtStIV9u3tUsFLr4Y5zAyHDyFMSUkJlXf70sZ-zFM62KlkhLGSUsnq6gytqKqbghJVnaMVYZIXijF-ia5y3hNClKB0hXbv4PwAHe4PYfLBHCHNpgXT3-IxmAmwGTqcvyAEDAF6GKaMW5PnUBzwm7Gx9XiM4TjE3puQr9GFmwVufnWNPp8ePzYvxXb3_Lq53xaWCTUVDXAhRe2EdBUxpOKNos7wxkjieCfnq-xE1VjT0aYGq6QDyy2DthKCUSX5Gqll16aYcwKnx-R7k46aEn0Co_f6D4w-gdELmLn6sFRh_u_bQ9LZehgsdD7BnO2i_3_kB5elcmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refined multilayered beam, plate and shell elements based on Jacobi polynomials</title><source>ScienceDirect Freedom Collection</source><creator>Carrera, E. ; Augello, R. ; Pagani, A. ; Scano, D.</creator><creatorcontrib>Carrera, E. ; Augello, R. ; Pagani, A. ; Scano, D.</creatorcontrib><description>In this paper, theories of structures based on hierarchical Jacobi expansions are explored for the static analysis of multilayered beams, plates and shells. They belong to the family of classical orthogonal polynomials. This expansion is employed in the framework of the Carrera Unified Formulation (CUF), which allows to generate finite element stiffness matrices in a straightforward way. CUF allows also to employ both layer-wise and equivalent single layer approaches in order to obtain the desired degree of precision and computational cost. In this work, CUF is exploited for the analysis of one-dimensional beams and two-dimensional plates and shells, and several case studies from the literature are analysed. Displacements, in-plane, transverse and shear stresses are shown. In particular, for some benchmarks, the shear stresses are calculated using the constitutive relations and the stress recovery technique. The obtained results clearly show the convenience of using equivalent single layer models when calculating displacements, in-plane stresses and shear stresses recovered by three-dimensional indefinite equilibrium equations. On the other hand, layer-wise models are able to accurately predict the structural behaviour, even though higher degrees of freedom are needed.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2022.116275</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam models ; Composite structures ; Equivalent single layer ; Jacobi polynomials ; Layer-wise ; Plate models ; Shell models ; Stress recovery</subject><ispartof>Composite structures, 2023-01, Vol.304, p.116275, Article 116275</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863</citedby><cites>FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863</cites><orcidid>0000-0002-3902-3272 ; 0000-0001-9074-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Carrera, E.</creatorcontrib><creatorcontrib>Augello, R.</creatorcontrib><creatorcontrib>Pagani, A.</creatorcontrib><creatorcontrib>Scano, D.</creatorcontrib><title>Refined multilayered beam, plate and shell elements based on Jacobi polynomials</title><title>Composite structures</title><description>In this paper, theories of structures based on hierarchical Jacobi expansions are explored for the static analysis of multilayered beams, plates and shells. They belong to the family of classical orthogonal polynomials. This expansion is employed in the framework of the Carrera Unified Formulation (CUF), which allows to generate finite element stiffness matrices in a straightforward way. CUF allows also to employ both layer-wise and equivalent single layer approaches in order to obtain the desired degree of precision and computational cost. In this work, CUF is exploited for the analysis of one-dimensional beams and two-dimensional plates and shells, and several case studies from the literature are analysed. Displacements, in-plane, transverse and shear stresses are shown. In particular, for some benchmarks, the shear stresses are calculated using the constitutive relations and the stress recovery technique. The obtained results clearly show the convenience of using equivalent single layer models when calculating displacements, in-plane stresses and shear stresses recovered by three-dimensional indefinite equilibrium equations. On the other hand, layer-wise models are able to accurately predict the structural behaviour, even though higher degrees of freedom are needed.</description><subject>Beam models</subject><subject>Composite structures</subject><subject>Equivalent single layer</subject><subject>Jacobi polynomials</subject><subject>Layer-wise</subject><subject>Plate models</subject><subject>Shell models</subject><subject>Stress recovery</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KxDAUhIMouK6-Qx7A1vw1TS918ZeFBdHrkKYnmCVtStIV9u3tUsFLr4Y5zAyHDyFMSUkJlXf70sZ-zFM62KlkhLGSUsnq6gytqKqbghJVnaMVYZIXijF-ia5y3hNClKB0hXbv4PwAHe4PYfLBHCHNpgXT3-IxmAmwGTqcvyAEDAF6GKaMW5PnUBzwm7Gx9XiM4TjE3puQr9GFmwVufnWNPp8ePzYvxXb3_Lq53xaWCTUVDXAhRe2EdBUxpOKNos7wxkjieCfnq-xE1VjT0aYGq6QDyy2DthKCUSX5Gqll16aYcwKnx-R7k46aEn0Co_f6D4w-gdELmLn6sFRh_u_bQ9LZehgsdD7BnO2i_3_kB5elcmE</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Carrera, E.</creator><creator>Augello, R.</creator><creator>Pagani, A.</creator><creator>Scano, D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3902-3272</orcidid><orcidid>https://orcid.org/0000-0001-9074-2558</orcidid></search><sort><creationdate>20230115</creationdate><title>Refined multilayered beam, plate and shell elements based on Jacobi polynomials</title><author>Carrera, E. ; Augello, R. ; Pagani, A. ; Scano, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beam models</topic><topic>Composite structures</topic><topic>Equivalent single layer</topic><topic>Jacobi polynomials</topic><topic>Layer-wise</topic><topic>Plate models</topic><topic>Shell models</topic><topic>Stress recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrera, E.</creatorcontrib><creatorcontrib>Augello, R.</creatorcontrib><creatorcontrib>Pagani, A.</creatorcontrib><creatorcontrib>Scano, D.</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrera, E.</au><au>Augello, R.</au><au>Pagani, A.</au><au>Scano, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined multilayered beam, plate and shell elements based on Jacobi polynomials</atitle><jtitle>Composite structures</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>304</volume><spage>116275</spage><pages>116275-</pages><artnum>116275</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this paper, theories of structures based on hierarchical Jacobi expansions are explored for the static analysis of multilayered beams, plates and shells. They belong to the family of classical orthogonal polynomials. This expansion is employed in the framework of the Carrera Unified Formulation (CUF), which allows to generate finite element stiffness matrices in a straightforward way. CUF allows also to employ both layer-wise and equivalent single layer approaches in order to obtain the desired degree of precision and computational cost. In this work, CUF is exploited for the analysis of one-dimensional beams and two-dimensional plates and shells, and several case studies from the literature are analysed. Displacements, in-plane, transverse and shear stresses are shown. In particular, for some benchmarks, the shear stresses are calculated using the constitutive relations and the stress recovery technique. The obtained results clearly show the convenience of using equivalent single layer models when calculating displacements, in-plane stresses and shear stresses recovered by three-dimensional indefinite equilibrium equations. On the other hand, layer-wise models are able to accurately predict the structural behaviour, even though higher degrees of freedom are needed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2022.116275</doi><orcidid>https://orcid.org/0000-0002-3902-3272</orcidid><orcidid>https://orcid.org/0000-0001-9074-2558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2023-01, Vol.304, p.116275, Article 116275
issn 0263-8223
1879-1085
language eng
recordid cdi_crossref_primary_10_1016_j_compstruct_2022_116275
source ScienceDirect Freedom Collection
subjects Beam models
Composite structures
Equivalent single layer
Jacobi polynomials
Layer-wise
Plate models
Shell models
Stress recovery
title Refined multilayered beam, plate and shell elements based on Jacobi polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20multilayered%20beam,%20plate%20and%20shell%20elements%20based%20on%20Jacobi%20polynomials&rft.jtitle=Composite%20structures&rft.au=Carrera,%20E.&rft.date=2023-01-15&rft.volume=304&rft.spage=116275&rft.pages=116275-&rft.artnum=116275&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2022.116275&rft_dat=%3Celsevier_cross%3ES0263822322010078%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-9e34647f46f50a053981fa39a60f3d66f56d459cad197ec86fec3c2eb54421863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true