Loading…
A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS
Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new...
Saved in:
Published in: | Composite structures 2024-09, Vol.343, p.118272, Article 118272 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3 |
container_end_page | |
container_issue | |
container_start_page | 118272 |
container_title | Composite structures |
container_volume | 343 |
creator | Liu, Qiuhan Wang, Qiang Guo, Jiansheng Liu, Wenquan Xia, Ruicong Yu, Jiayang Wang, Xinghao |
description | Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization. |
doi_str_mv | 10.1016/j.compstruct.2024.118272 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2024_118272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822324004008</els_id><sourcerecordid>S0263822324004008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-AcS_EgT51jKo0iVOBDOluPY4JLEZZ0U0T_hb3EVJI6c9jE7s7uDEKYkpYTm19tU-24XBhj1kDLCspRSwQp2gmZUFGVCiVicohlhOU8EY_wcXYSwJYSIjNIZ-l7iClQfrIfOQFKrYBrcmxFUG8Pw6eEdRwyrcfCdGpzGjWlV5_qY-x7rNwVKDwbcYWp4iz9GBcMBW1dHQTCuj3wdVXe-_Yo7sB5hH8vp5BEMHoPrX7HrduCPQLU-JNXt8yU6s6oN5uo3ztHL_V21Wiebp4fH1XKTaFryIVG6ZIKVjcisLsvSMkYyy2vNG00ywXMuCM8VUYuGFzUvFlYJY4TKC8ZLweuGz5GYdDX4EMBYuQPXKfiSlMijxXIr_yyWR4vlZHGk3kxUE-_bOwMyaGf6-KwDE2cb7_4X-QHL_4-L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Qiuhan ; Wang, Qiang ; Guo, Jiansheng ; Liu, Wenquan ; Xia, Ruicong ; Yu, Jiayang ; Wang, Xinghao</creator><creatorcontrib>Liu, Qiuhan ; Wang, Qiang ; Guo, Jiansheng ; Liu, Wenquan ; Xia, Ruicong ; Yu, Jiayang ; Wang, Xinghao</creatorcontrib><description>Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2024.118272</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic characterization ; Delamination defects ; Quartz fiber-reinforced polymer (QFRP) ; Terahertz non-destructive testing ; Transformer-based neural network</subject><ispartof>Composite structures, 2024-09, Vol.343, p.118272, Article 118272</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3</cites><orcidid>0000-0001-7118-5709 ; 0000-0003-2225-5138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qiuhan</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Guo, Jiansheng</creatorcontrib><creatorcontrib>Liu, Wenquan</creatorcontrib><creatorcontrib>Xia, Ruicong</creatorcontrib><creatorcontrib>Yu, Jiayang</creatorcontrib><creatorcontrib>Wang, Xinghao</creatorcontrib><title>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</title><title>Composite structures</title><description>Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.</description><subject>Automatic characterization</subject><subject>Delamination defects</subject><subject>Quartz fiber-reinforced polymer (QFRP)</subject><subject>Terahertz non-destructive testing</subject><subject>Transformer-based neural network</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-AcS_EgT51jKo0iVOBDOluPY4JLEZZ0U0T_hb3EVJI6c9jE7s7uDEKYkpYTm19tU-24XBhj1kDLCspRSwQp2gmZUFGVCiVicohlhOU8EY_wcXYSwJYSIjNIZ-l7iClQfrIfOQFKrYBrcmxFUG8Pw6eEdRwyrcfCdGpzGjWlV5_qY-x7rNwVKDwbcYWp4iz9GBcMBW1dHQTCuj3wdVXe-_Yo7sB5hH8vp5BEMHoPrX7HrduCPQLU-JNXt8yU6s6oN5uo3ztHL_V21Wiebp4fH1XKTaFryIVG6ZIKVjcisLsvSMkYyy2vNG00ywXMuCM8VUYuGFzUvFlYJY4TKC8ZLweuGz5GYdDX4EMBYuQPXKfiSlMijxXIr_yyWR4vlZHGk3kxUE-_bOwMyaGf6-KwDE2cb7_4X-QHL_4-L</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Qiuhan</creator><creator>Wang, Qiang</creator><creator>Guo, Jiansheng</creator><creator>Liu, Wenquan</creator><creator>Xia, Ruicong</creator><creator>Yu, Jiayang</creator><creator>Wang, Xinghao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7118-5709</orcidid><orcidid>https://orcid.org/0000-0003-2225-5138</orcidid></search><sort><creationdate>20240901</creationdate><title>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</title><author>Liu, Qiuhan ; Wang, Qiang ; Guo, Jiansheng ; Liu, Wenquan ; Xia, Ruicong ; Yu, Jiayang ; Wang, Xinghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic characterization</topic><topic>Delamination defects</topic><topic>Quartz fiber-reinforced polymer (QFRP)</topic><topic>Terahertz non-destructive testing</topic><topic>Transformer-based neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiuhan</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Guo, Jiansheng</creatorcontrib><creatorcontrib>Liu, Wenquan</creatorcontrib><creatorcontrib>Xia, Ruicong</creatorcontrib><creatorcontrib>Yu, Jiayang</creatorcontrib><creatorcontrib>Wang, Xinghao</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiuhan</au><au>Wang, Qiang</au><au>Guo, Jiansheng</au><au>Liu, Wenquan</au><au>Xia, Ruicong</au><au>Yu, Jiayang</au><au>Wang, Xinghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</atitle><jtitle>Composite structures</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>343</volume><spage>118272</spage><pages>118272-</pages><artnum>118272</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2024.118272</doi><orcidid>https://orcid.org/0000-0001-7118-5709</orcidid><orcidid>https://orcid.org/0000-0003-2225-5138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2024-09, Vol.343, p.118272, Article 118272 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_compstruct_2024_118272 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Automatic characterization Delamination defects Quartz fiber-reinforced polymer (QFRP) Terahertz non-destructive testing Transformer-based neural network |
title | A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transformer-based%20neural%20network%20for%20automatic%20delamination%20characterization%20of%20quartz%20fiber-reinforced%20polymer%20curved%20structure%20using%20improved%20THz-TDS&rft.jtitle=Composite%20structures&rft.au=Liu,%20Qiuhan&rft.date=2024-09-01&rft.volume=343&rft.spage=118272&rft.pages=118272-&rft.artnum=118272&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2024.118272&rft_dat=%3Celsevier_cross%3ES0263822324004008%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |