Loading…

A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS

Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2024-09, Vol.343, p.118272, Article 118272
Main Authors: Liu, Qiuhan, Wang, Qiang, Guo, Jiansheng, Liu, Wenquan, Xia, Ruicong, Yu, Jiayang, Wang, Xinghao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3
container_end_page
container_issue
container_start_page 118272
container_title Composite structures
container_volume 343
creator Liu, Qiuhan
Wang, Qiang
Guo, Jiansheng
Liu, Wenquan
Xia, Ruicong
Yu, Jiayang
Wang, Xinghao
description Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.
doi_str_mv 10.1016/j.compstruct.2024.118272
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2024_118272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822324004008</els_id><sourcerecordid>S0263822324004008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-AcS_EgT51jKo0iVOBDOluPY4JLEZZ0U0T_hb3EVJI6c9jE7s7uDEKYkpYTm19tU-24XBhj1kDLCspRSwQp2gmZUFGVCiVicohlhOU8EY_wcXYSwJYSIjNIZ-l7iClQfrIfOQFKrYBrcmxFUG8Pw6eEdRwyrcfCdGpzGjWlV5_qY-x7rNwVKDwbcYWp4iz9GBcMBW1dHQTCuj3wdVXe-_Yo7sB5hH8vp5BEMHoPrX7HrduCPQLU-JNXt8yU6s6oN5uo3ztHL_V21Wiebp4fH1XKTaFryIVG6ZIKVjcisLsvSMkYyy2vNG00ywXMuCM8VUYuGFzUvFlYJY4TKC8ZLweuGz5GYdDX4EMBYuQPXKfiSlMijxXIr_yyWR4vlZHGk3kxUE-_bOwMyaGf6-KwDE2cb7_4X-QHL_4-L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Qiuhan ; Wang, Qiang ; Guo, Jiansheng ; Liu, Wenquan ; Xia, Ruicong ; Yu, Jiayang ; Wang, Xinghao</creator><creatorcontrib>Liu, Qiuhan ; Wang, Qiang ; Guo, Jiansheng ; Liu, Wenquan ; Xia, Ruicong ; Yu, Jiayang ; Wang, Xinghao</creatorcontrib><description>Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2024.118272</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic characterization ; Delamination defects ; Quartz fiber-reinforced polymer (QFRP) ; Terahertz non-destructive testing ; Transformer-based neural network</subject><ispartof>Composite structures, 2024-09, Vol.343, p.118272, Article 118272</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3</cites><orcidid>0000-0001-7118-5709 ; 0000-0003-2225-5138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qiuhan</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Guo, Jiansheng</creatorcontrib><creatorcontrib>Liu, Wenquan</creatorcontrib><creatorcontrib>Xia, Ruicong</creatorcontrib><creatorcontrib>Yu, Jiayang</creatorcontrib><creatorcontrib>Wang, Xinghao</creatorcontrib><title>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</title><title>Composite structures</title><description>Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.</description><subject>Automatic characterization</subject><subject>Delamination defects</subject><subject>Quartz fiber-reinforced polymer (QFRP)</subject><subject>Terahertz non-destructive testing</subject><subject>Transformer-based neural network</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-AcS_EgT51jKo0iVOBDOluPY4JLEZZ0U0T_hb3EVJI6c9jE7s7uDEKYkpYTm19tU-24XBhj1kDLCspRSwQp2gmZUFGVCiVicohlhOU8EY_wcXYSwJYSIjNIZ-l7iClQfrIfOQFKrYBrcmxFUG8Pw6eEdRwyrcfCdGpzGjWlV5_qY-x7rNwVKDwbcYWp4iz9GBcMBW1dHQTCuj3wdVXe-_Yo7sB5hH8vp5BEMHoPrX7HrduCPQLU-JNXt8yU6s6oN5uo3ztHL_V21Wiebp4fH1XKTaFryIVG6ZIKVjcisLsvSMkYyy2vNG00ywXMuCM8VUYuGFzUvFlYJY4TKC8ZLweuGz5GYdDX4EMBYuQPXKfiSlMijxXIr_yyWR4vlZHGk3kxUE-_bOwMyaGf6-KwDE2cb7_4X-QHL_4-L</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Qiuhan</creator><creator>Wang, Qiang</creator><creator>Guo, Jiansheng</creator><creator>Liu, Wenquan</creator><creator>Xia, Ruicong</creator><creator>Yu, Jiayang</creator><creator>Wang, Xinghao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7118-5709</orcidid><orcidid>https://orcid.org/0000-0003-2225-5138</orcidid></search><sort><creationdate>20240901</creationdate><title>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</title><author>Liu, Qiuhan ; Wang, Qiang ; Guo, Jiansheng ; Liu, Wenquan ; Xia, Ruicong ; Yu, Jiayang ; Wang, Xinghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic characterization</topic><topic>Delamination defects</topic><topic>Quartz fiber-reinforced polymer (QFRP)</topic><topic>Terahertz non-destructive testing</topic><topic>Transformer-based neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiuhan</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Guo, Jiansheng</creatorcontrib><creatorcontrib>Liu, Wenquan</creatorcontrib><creatorcontrib>Xia, Ruicong</creatorcontrib><creatorcontrib>Yu, Jiayang</creatorcontrib><creatorcontrib>Wang, Xinghao</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiuhan</au><au>Wang, Qiang</au><au>Guo, Jiansheng</au><au>Liu, Wenquan</au><au>Xia, Ruicong</au><au>Yu, Jiayang</au><au>Wang, Xinghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS</atitle><jtitle>Composite structures</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>343</volume><spage>118272</spage><pages>118272-</pages><artnum>118272</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2024.118272</doi><orcidid>https://orcid.org/0000-0001-7118-5709</orcidid><orcidid>https://orcid.org/0000-0003-2225-5138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2024-09, Vol.343, p.118272, Article 118272
issn 0263-8223
1879-1085
language eng
recordid cdi_crossref_primary_10_1016_j_compstruct_2024_118272
source ScienceDirect Freedom Collection 2022-2024
subjects Automatic characterization
Delamination defects
Quartz fiber-reinforced polymer (QFRP)
Terahertz non-destructive testing
Transformer-based neural network
title A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transformer-based%20neural%20network%20for%20automatic%20delamination%20characterization%20of%20quartz%20fiber-reinforced%20polymer%20curved%20structure%20using%20improved%20THz-TDS&rft.jtitle=Composite%20structures&rft.au=Liu,%20Qiuhan&rft.date=2024-09-01&rft.volume=343&rft.spage=118272&rft.pages=118272-&rft.artnum=118272&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2024.118272&rft_dat=%3Celsevier_cross%3ES0263822324004008%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c193t-ac92829d84fc999f2204f3bc3dc0483638036a0a5d37b375fa8ee8a6723983bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true