Loading…
Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data
•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model. Dynamic modulus |E*| is one of the essential material properties input in the American...
Saved in:
Published in: | Construction & building materials 2020-10, Vol.257, p.119549, Article 119549 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3 |
container_end_page | |
container_issue | |
container_start_page | 119549 |
container_title | Construction & building materials |
container_volume | 257 |
creator | Hamim, Asmah Md. Yusoff, Nur Izzi Omar, Hend Ali Jamaludin, Nor Azliana Akmal Hassan, Norhidayah Abdul El-Shafie, Ahmed Ceylan, Halil |
description | •Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model.
Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN. |
doi_str_mv | 10.1016/j.conbuildmat.2020.119549 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_conbuildmat_2020_119549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950061820315543</els_id><sourcerecordid>S0950061820315543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</originalsourceid><addsrcrecordid>eNqNkEtOBCEURYnRxPazB1xAtUBVIQxNx19i4kTHhIKHTVsFBihNL8edStsOHDq6yUvOzX0HoQtKlpRQfrlZmhiG2Y920mXJCKt3KvtOHqAFFVeyIT3jh2hBZE8awqk4Ric5bwghnHG2QF8PocBr0gUsdj74AhhGmCAUrIPFOhXvvPF6xAHm9BPlM6Y3PEFZR5uxiwnXCbmk2RQfXrHO72s9lt3RJKh9dhv05A2eop3HOeNJ5wIVmtMH4DnvGAtuhIrHgIufoFn7XGLaYquLPkNHTo8Zzn_zFL3c3jyv7pvHp7uH1fVjY1pGS0MHy_vWXUnB3CCkg1ZA2wtw3DFDNbQ1oeMdGywVUsDAWUslaNEB2L4z7SmS-16TYs4JnHpPftJpqyhRO9dqo_64VjvXau-6sqs9C3Xgh4eksvEQDFif6l_KRv-Plm9znZSR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</title><source>ScienceDirect Freedom Collection</source><creator>Hamim, Asmah ; Md. Yusoff, Nur Izzi ; Omar, Hend Ali ; Jamaludin, Nor Azliana Akmal ; Hassan, Norhidayah Abdul ; El-Shafie, Ahmed ; Ceylan, Halil</creator><creatorcontrib>Hamim, Asmah ; Md. Yusoff, Nur Izzi ; Omar, Hend Ali ; Jamaludin, Nor Azliana Akmal ; Hassan, Norhidayah Abdul ; El-Shafie, Ahmed ; Ceylan, Halil</creatorcontrib><description>•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model.
Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.</description><identifier>ISSN: 0950-0618</identifier><identifier>EISSN: 1879-0526</identifier><identifier>DOI: 10.1016/j.conbuildmat.2020.119549</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>AC dynamic modulus |E| master curve ; Artificial neural network ; Falling weight deflectometer ; Finite element ; Simple performance test</subject><ispartof>Construction & building materials, 2020-10, Vol.257, p.119549, Article 119549</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</citedby><cites>FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</cites><orcidid>0000-0003-4449-4981 ; 0000-0001-5018-8505 ; 0000-0002-0915-4124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hamim, Asmah</creatorcontrib><creatorcontrib>Md. Yusoff, Nur Izzi</creatorcontrib><creatorcontrib>Omar, Hend Ali</creatorcontrib><creatorcontrib>Jamaludin, Nor Azliana Akmal</creatorcontrib><creatorcontrib>Hassan, Norhidayah Abdul</creatorcontrib><creatorcontrib>El-Shafie, Ahmed</creatorcontrib><creatorcontrib>Ceylan, Halil</creatorcontrib><title>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</title><title>Construction & building materials</title><description>•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model.
Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.</description><subject>AC dynamic modulus |E| master curve</subject><subject>Artificial neural network</subject><subject>Falling weight deflectometer</subject><subject>Finite element</subject><subject>Simple performance test</subject><issn>0950-0618</issn><issn>1879-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkEtOBCEURYnRxPazB1xAtUBVIQxNx19i4kTHhIKHTVsFBihNL8edStsOHDq6yUvOzX0HoQtKlpRQfrlZmhiG2Y920mXJCKt3KvtOHqAFFVeyIT3jh2hBZE8awqk4Ric5bwghnHG2QF8PocBr0gUsdj74AhhGmCAUrIPFOhXvvPF6xAHm9BPlM6Y3PEFZR5uxiwnXCbmk2RQfXrHO72s9lt3RJKh9dhv05A2eop3HOeNJ5wIVmtMH4DnvGAtuhIrHgIufoFn7XGLaYquLPkNHTo8Zzn_zFL3c3jyv7pvHp7uH1fVjY1pGS0MHy_vWXUnB3CCkg1ZA2wtw3DFDNbQ1oeMdGywVUsDAWUslaNEB2L4z7SmS-16TYs4JnHpPftJpqyhRO9dqo_64VjvXau-6sqs9C3Xgh4eksvEQDFif6l_KRv-Plm9znZSR</recordid><startdate>20201010</startdate><enddate>20201010</enddate><creator>Hamim, Asmah</creator><creator>Md. Yusoff, Nur Izzi</creator><creator>Omar, Hend Ali</creator><creator>Jamaludin, Nor Azliana Akmal</creator><creator>Hassan, Norhidayah Abdul</creator><creator>El-Shafie, Ahmed</creator><creator>Ceylan, Halil</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4449-4981</orcidid><orcidid>https://orcid.org/0000-0001-5018-8505</orcidid><orcidid>https://orcid.org/0000-0002-0915-4124</orcidid></search><sort><creationdate>20201010</creationdate><title>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</title><author>Hamim, Asmah ; Md. Yusoff, Nur Izzi ; Omar, Hend Ali ; Jamaludin, Nor Azliana Akmal ; Hassan, Norhidayah Abdul ; El-Shafie, Ahmed ; Ceylan, Halil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AC dynamic modulus |E| master curve</topic><topic>Artificial neural network</topic><topic>Falling weight deflectometer</topic><topic>Finite element</topic><topic>Simple performance test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamim, Asmah</creatorcontrib><creatorcontrib>Md. Yusoff, Nur Izzi</creatorcontrib><creatorcontrib>Omar, Hend Ali</creatorcontrib><creatorcontrib>Jamaludin, Nor Azliana Akmal</creatorcontrib><creatorcontrib>Hassan, Norhidayah Abdul</creatorcontrib><creatorcontrib>El-Shafie, Ahmed</creatorcontrib><creatorcontrib>Ceylan, Halil</creatorcontrib><collection>CrossRef</collection><jtitle>Construction & building materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamim, Asmah</au><au>Md. Yusoff, Nur Izzi</au><au>Omar, Hend Ali</au><au>Jamaludin, Nor Azliana Akmal</au><au>Hassan, Norhidayah Abdul</au><au>El-Shafie, Ahmed</au><au>Ceylan, Halil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</atitle><jtitle>Construction & building materials</jtitle><date>2020-10-10</date><risdate>2020</risdate><volume>257</volume><spage>119549</spage><pages>119549-</pages><artnum>119549</artnum><issn>0950-0618</issn><eissn>1879-0526</eissn><abstract>•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model.
Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conbuildmat.2020.119549</doi><orcidid>https://orcid.org/0000-0003-4449-4981</orcidid><orcidid>https://orcid.org/0000-0001-5018-8505</orcidid><orcidid>https://orcid.org/0000-0002-0915-4124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-0618 |
ispartof | Construction & building materials, 2020-10, Vol.257, p.119549, Article 119549 |
issn | 0950-0618 1879-0526 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_conbuildmat_2020_119549 |
source | ScienceDirect Freedom Collection |
subjects | AC dynamic modulus |E| master curve Artificial neural network Falling weight deflectometer Finite element Simple performance test |
title | Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20finite%20element%20and%20artificial%20neural%20network%20methods%20for%20constructing%20asphalt%20concrete%20dynamic%20modulus%20master%20curve%20using%20deflection%20time-history%20data&rft.jtitle=Construction%20&%20building%20materials&rft.au=Hamim,%20Asmah&rft.date=2020-10-10&rft.volume=257&rft.spage=119549&rft.pages=119549-&rft.artnum=119549&rft.issn=0950-0618&rft.eissn=1879-0526&rft_id=info:doi/10.1016/j.conbuildmat.2020.119549&rft_dat=%3Celsevier_cross%3ES0950061820315543%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |