Loading…

Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data

•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model. Dynamic modulus |E*| is one of the essential material properties input in the American...

Full description

Saved in:
Bibliographic Details
Published in:Construction & building materials 2020-10, Vol.257, p.119549, Article 119549
Main Authors: Hamim, Asmah, Md. Yusoff, Nur Izzi, Omar, Hend Ali, Jamaludin, Nor Azliana Akmal, Hassan, Norhidayah Abdul, El-Shafie, Ahmed, Ceylan, Halil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3
cites cdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3
container_end_page
container_issue
container_start_page 119549
container_title Construction & building materials
container_volume 257
creator Hamim, Asmah
Md. Yusoff, Nur Izzi
Omar, Hend Ali
Jamaludin, Nor Azliana Akmal
Hassan, Norhidayah Abdul
El-Shafie, Ahmed
Ceylan, Halil
description •Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model. Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.
doi_str_mv 10.1016/j.conbuildmat.2020.119549
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_conbuildmat_2020_119549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950061820315543</els_id><sourcerecordid>S0950061820315543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</originalsourceid><addsrcrecordid>eNqNkEtOBCEURYnRxPazB1xAtUBVIQxNx19i4kTHhIKHTVsFBihNL8edStsOHDq6yUvOzX0HoQtKlpRQfrlZmhiG2Y920mXJCKt3KvtOHqAFFVeyIT3jh2hBZE8awqk4Ric5bwghnHG2QF8PocBr0gUsdj74AhhGmCAUrIPFOhXvvPF6xAHm9BPlM6Y3PEFZR5uxiwnXCbmk2RQfXrHO72s9lt3RJKh9dhv05A2eop3HOeNJ5wIVmtMH4DnvGAtuhIrHgIufoFn7XGLaYquLPkNHTo8Zzn_zFL3c3jyv7pvHp7uH1fVjY1pGS0MHy_vWXUnB3CCkg1ZA2wtw3DFDNbQ1oeMdGywVUsDAWUslaNEB2L4z7SmS-16TYs4JnHpPftJpqyhRO9dqo_64VjvXau-6sqs9C3Xgh4eksvEQDFif6l_KRv-Plm9znZSR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</title><source>ScienceDirect Freedom Collection</source><creator>Hamim, Asmah ; Md. Yusoff, Nur Izzi ; Omar, Hend Ali ; Jamaludin, Nor Azliana Akmal ; Hassan, Norhidayah Abdul ; El-Shafie, Ahmed ; Ceylan, Halil</creator><creatorcontrib>Hamim, Asmah ; Md. Yusoff, Nur Izzi ; Omar, Hend Ali ; Jamaludin, Nor Azliana Akmal ; Hassan, Norhidayah Abdul ; El-Shafie, Ahmed ; Ceylan, Halil</creatorcontrib><description>•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model. Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.</description><identifier>ISSN: 0950-0618</identifier><identifier>EISSN: 1879-0526</identifier><identifier>DOI: 10.1016/j.conbuildmat.2020.119549</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>AC dynamic modulus |E| master curve ; Artificial neural network ; Falling weight deflectometer ; Finite element ; Simple performance test</subject><ispartof>Construction &amp; building materials, 2020-10, Vol.257, p.119549, Article 119549</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</citedby><cites>FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</cites><orcidid>0000-0003-4449-4981 ; 0000-0001-5018-8505 ; 0000-0002-0915-4124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hamim, Asmah</creatorcontrib><creatorcontrib>Md. Yusoff, Nur Izzi</creatorcontrib><creatorcontrib>Omar, Hend Ali</creatorcontrib><creatorcontrib>Jamaludin, Nor Azliana Akmal</creatorcontrib><creatorcontrib>Hassan, Norhidayah Abdul</creatorcontrib><creatorcontrib>El-Shafie, Ahmed</creatorcontrib><creatorcontrib>Ceylan, Halil</creatorcontrib><title>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</title><title>Construction &amp; building materials</title><description>•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model. Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.</description><subject>AC dynamic modulus |E| master curve</subject><subject>Artificial neural network</subject><subject>Falling weight deflectometer</subject><subject>Finite element</subject><subject>Simple performance test</subject><issn>0950-0618</issn><issn>1879-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkEtOBCEURYnRxPazB1xAtUBVIQxNx19i4kTHhIKHTVsFBihNL8edStsOHDq6yUvOzX0HoQtKlpRQfrlZmhiG2Y920mXJCKt3KvtOHqAFFVeyIT3jh2hBZE8awqk4Ric5bwghnHG2QF8PocBr0gUsdj74AhhGmCAUrIPFOhXvvPF6xAHm9BPlM6Y3PEFZR5uxiwnXCbmk2RQfXrHO72s9lt3RJKh9dhv05A2eop3HOeNJ5wIVmtMH4DnvGAtuhIrHgIufoFn7XGLaYquLPkNHTo8Zzn_zFL3c3jyv7pvHp7uH1fVjY1pGS0MHy_vWXUnB3CCkg1ZA2wtw3DFDNbQ1oeMdGywVUsDAWUslaNEB2L4z7SmS-16TYs4JnHpPftJpqyhRO9dqo_64VjvXau-6sqs9C3Xgh4eksvEQDFif6l_KRv-Plm9znZSR</recordid><startdate>20201010</startdate><enddate>20201010</enddate><creator>Hamim, Asmah</creator><creator>Md. Yusoff, Nur Izzi</creator><creator>Omar, Hend Ali</creator><creator>Jamaludin, Nor Azliana Akmal</creator><creator>Hassan, Norhidayah Abdul</creator><creator>El-Shafie, Ahmed</creator><creator>Ceylan, Halil</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4449-4981</orcidid><orcidid>https://orcid.org/0000-0001-5018-8505</orcidid><orcidid>https://orcid.org/0000-0002-0915-4124</orcidid></search><sort><creationdate>20201010</creationdate><title>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</title><author>Hamim, Asmah ; Md. Yusoff, Nur Izzi ; Omar, Hend Ali ; Jamaludin, Nor Azliana Akmal ; Hassan, Norhidayah Abdul ; El-Shafie, Ahmed ; Ceylan, Halil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AC dynamic modulus |E| master curve</topic><topic>Artificial neural network</topic><topic>Falling weight deflectometer</topic><topic>Finite element</topic><topic>Simple performance test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamim, Asmah</creatorcontrib><creatorcontrib>Md. Yusoff, Nur Izzi</creatorcontrib><creatorcontrib>Omar, Hend Ali</creatorcontrib><creatorcontrib>Jamaludin, Nor Azliana Akmal</creatorcontrib><creatorcontrib>Hassan, Norhidayah Abdul</creatorcontrib><creatorcontrib>El-Shafie, Ahmed</creatorcontrib><creatorcontrib>Ceylan, Halil</creatorcontrib><collection>CrossRef</collection><jtitle>Construction &amp; building materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamim, Asmah</au><au>Md. Yusoff, Nur Izzi</au><au>Omar, Hend Ali</au><au>Jamaludin, Nor Azliana Akmal</au><au>Hassan, Norhidayah Abdul</au><au>El-Shafie, Ahmed</au><au>Ceylan, Halil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data</atitle><jtitle>Construction &amp; building materials</jtitle><date>2020-10-10</date><risdate>2020</risdate><volume>257</volume><spage>119549</spage><pages>119549-</pages><artnum>119549</artnum><issn>0950-0618</issn><eissn>1879-0526</eissn><abstract>•Master curve was constructed using FWD deflection time-history data.•ANN models were designed using deflection-time history data produced via FEM.•The RBFN model shows higher R2 values compared to the MLFN model. Dynamic modulus |E*| is one of the essential material properties input in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG). Asphalt concrete (AC) dynamic modulus master curve is used to determine the modulus of asphalt concrete over a wide range of temperature and frequency. However, the standard laboratory test procedures for establishing asphalt concrete |E*| and plotting the AC |E*| master curve are time consuming and require considerable resources. Therefore, this study aims to predict AC |E*| master curve by using data from a falling weight deflectometer (FWD) deflection time-history. Prior to developing the model, a simple performance testing (SPT) dynamic modulus test was conducted in the laboratory on five core specimens to obtain the dynamic modulus data at several test temperatures and load frequencies. Results of SPT dynamic modulus show that the |E*| of all specimens is influenced by both loading rate and test temperature. The specimens are stiffer at low temperature and high frequency, and the |E*| values are the lowest at the highest temperature and lowest frequency. Artificial neural network (ANN) models are designed using the FWD deflection-time history data obtained by the finite element method (FEM) to predict the AC |E*| master curve. This study uses two types of ANN models, namely multilayer feed-forward neural network (MLFN) and radial basis function network (RBFN). ANN results show that both MLFN and RBFN models have a promising potential in the construction of AC |E*| master curve. A comparison of the two types of ANNs revealed that RBFN has a lower percentage of error, and is therefore more accurate than MLFN.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conbuildmat.2020.119549</doi><orcidid>https://orcid.org/0000-0003-4449-4981</orcidid><orcidid>https://orcid.org/0000-0001-5018-8505</orcidid><orcidid>https://orcid.org/0000-0002-0915-4124</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-0618
ispartof Construction & building materials, 2020-10, Vol.257, p.119549, Article 119549
issn 0950-0618
1879-0526
language eng
recordid cdi_crossref_primary_10_1016_j_conbuildmat_2020_119549
source ScienceDirect Freedom Collection
subjects AC dynamic modulus |E| master curve
Artificial neural network
Falling weight deflectometer
Finite element
Simple performance test
title Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20finite%20element%20and%20artificial%20neural%20network%20methods%20for%20constructing%20asphalt%20concrete%20dynamic%20modulus%20master%20curve%20using%20deflection%20time-history%20data&rft.jtitle=Construction%20&%20building%20materials&rft.au=Hamim,%20Asmah&rft.date=2020-10-10&rft.volume=257&rft.spage=119549&rft.pages=119549-&rft.artnum=119549&rft.issn=0950-0618&rft.eissn=1879-0526&rft_id=info:doi/10.1016/j.conbuildmat.2020.119549&rft_dat=%3Celsevier_cross%3ES0950061820315543%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-1bd653f7982fb89fe38e358ef6f2c1ae36f2e4642bd1898eb62319ea84eed54c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true