Loading…

Non-linear behaviour and failure mechanism of bamboo poles in bending

The adoption of bamboo poles in construction can support the reduction of carbon dioxide emissions generated by the manufacture of conventional structural elements produced from unsustainable industrialised materials. This research focuses on the study of the nonlinear softening behaviour and failur...

Full description

Saved in:
Bibliographic Details
Published in:Construction & building materials 2021-10, Vol.305, p.124747, Article 124747
Main Authors: Lorenzo, Rodolfo, Mimendi, Leonel, Yang, Dong, Li, Haitao, Mouka, Theodora, Dimitrakopoulos, Elias G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adoption of bamboo poles in construction can support the reduction of carbon dioxide emissions generated by the manufacture of conventional structural elements produced from unsustainable industrialised materials. This research focuses on the study of the nonlinear softening behaviour and failure mechanism of bamboo poles in bending through a series of experimental tests on Moso (Phyllostachys pubescens) bamboo and Finite Element simulations supported by digitisation techniques. The results indicate that this nonlinear behaviour is caused by the incremental development of cracks at the locations where the circumferential tensile capacity of bamboo is exceeded leading to the eventual failure of the pole. Also, the simulations in this study suggest that reinforcing bamboo poles with pretensioned stainless steel bands is ineffective in counteracting the development of significant circumferential tensile stresses and the associated longitudinal cracks. More generally, this work highlights the challenges and limitations of applying traditional methods of structural testing and design for manufactured components to a highly variable natural structural element and speculates whether modern digital technologies can be adopted to manage more effectively the effects of this inherent variability.
ISSN:0950-0618
1879-0526
DOI:10.1016/j.conbuildmat.2021.124747