Loading…

Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles

•Nano-SiO2 improves the packing density and generates abundant C-A-S-H gels of UHP-AAC.•Interfacial bond strength and pull-out energy of steel fibers in UHP-AAC are improved by nano-SiO2.•The highest compressive strength 184 MPa and lowest porosity of 7.53% are achieved.•The highest tensile strength...

Full description

Saved in:
Bibliographic Details
Published in:Construction & building materials 2023-09, Vol.398, p.132514, Article 132514
Main Authors: Piao, Rongzhen, Oh, Taekgeun, Kim, Gi Woong, Choi, Hong-Joon, Banthia, Nemkumar, Yoo, Doo-Yeol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3
cites cdi_FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3
container_end_page
container_issue
container_start_page 132514
container_title Construction & building materials
container_volume 398
creator Piao, Rongzhen
Oh, Taekgeun
Kim, Gi Woong
Choi, Hong-Joon
Banthia, Nemkumar
Yoo, Doo-Yeol
description •Nano-SiO2 improves the packing density and generates abundant C-A-S-H gels of UHP-AAC.•Interfacial bond strength and pull-out energy of steel fibers in UHP-AAC are improved by nano-SiO2.•The highest compressive strength 184 MPa and lowest porosity of 7.53% are achieved.•The highest tensile strength and strain energy density of UHP-FRAAC are achieved at 2% nano-SiO2 replacement.•Higher dosages of nano-SiO2, 3% or more, negatively affect the tensile properties of UHP-FRAAC due to its agglomeration. This study investigates the effect of silicon dioxide nanoparticles (nano-SiO2) on the microstructure and mechanical properties of eco-friendly, cementless ultra-high-performance fiber-reinforced alkali-activated concrete (UHP-FRAAC). Various amounts of nano-SiO2 were adopted in a range of 0%-5% of the mass of silica fume (SF). The experimental results showed that the addition of nano-SiO2 improves the packing density of ultra-high-performance alkali-activated concrete (UHP-AAC) and generates abundant calcium (alumino)silicate hydrate (C-(A-)S-H) gels to increase its density. Therefore, the interfacial bond strength and pull-out energy of steel fibers from UHP-AAC could be enhanced. At 2% nano-SiO2 replacement, the compressive strength of UHP-FRAAC was the highest (184.2 MPa), and its total porosity was the lowest, decreasing from 9.72% to 7.53%. The highest equivalent bond strength and strain energy density of UHP-FRAAC occurred at 2% nano-SiO2 replacement, i.e., 10.9 MPa and 72.5 kJ/m3, respectively. The maximum tensile strength of 14.5 MPa was observed at a nano-SiO2 content of 3%. Higher dosages of nano-SiO2, 3% or more, negatively affected the interfacial bond and tensile properties of UHP-FRAAC due to its agglomeration, but still exhibited higher performance than that of the plain UHP-FRAAC up to the dosage of 5%. Therefore, the optimal dosage of nano-SiO2 in UHP-FRAAC was suggested to be 2% by mass of silica fume.
doi_str_mv 10.1016/j.conbuildmat.2023.132514
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_conbuildmat_2023_132514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950061823022304</els_id><sourcerecordid>S0950061823022304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxD-YDXGwnceMlqnhJSGzYW85kQqfkUdkuj__hQ3FUFixZjXRn7p2rw9iVkksllbneLmEamz317eDTUktdLFWhK1UesYWqV1bISptjtpC2kkIaVZ-ysxi3UkqjjV6w79tx40fAlg8EYYop7CHtA3I_ZgkhLwl8z3dh2mFIhJFPHQcccEw9xsj3fQpebOh1I_JBN4VhjuMdNRhEQBqzNMf7_s33JDwkevcpC7k3BEzIPyhteKSessJbmj6pRT76cdr5_BDylwt20vk-4uXvPGcvd7cv6wfx9Hz_uL55ElBolQRohVYWNdiya1erGmoNaOpa1QZVVwJaU5pVpXVZeStbYxuprJS67MqmqXxxzuwhdgYRA3ZuF2jw4csp6Wbabuv-0HYzbXegnb3rgxdzv3fC4CIQzmApICTXTvSPlB9XspRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Piao, Rongzhen ; Oh, Taekgeun ; Kim, Gi Woong ; Choi, Hong-Joon ; Banthia, Nemkumar ; Yoo, Doo-Yeol</creator><creatorcontrib>Piao, Rongzhen ; Oh, Taekgeun ; Kim, Gi Woong ; Choi, Hong-Joon ; Banthia, Nemkumar ; Yoo, Doo-Yeol</creatorcontrib><description>•Nano-SiO2 improves the packing density and generates abundant C-A-S-H gels of UHP-AAC.•Interfacial bond strength and pull-out energy of steel fibers in UHP-AAC are improved by nano-SiO2.•The highest compressive strength 184 MPa and lowest porosity of 7.53% are achieved.•The highest tensile strength and strain energy density of UHP-FRAAC are achieved at 2% nano-SiO2 replacement.•Higher dosages of nano-SiO2, 3% or more, negatively affect the tensile properties of UHP-FRAAC due to its agglomeration. This study investigates the effect of silicon dioxide nanoparticles (nano-SiO2) on the microstructure and mechanical properties of eco-friendly, cementless ultra-high-performance fiber-reinforced alkali-activated concrete (UHP-FRAAC). Various amounts of nano-SiO2 were adopted in a range of 0%-5% of the mass of silica fume (SF). The experimental results showed that the addition of nano-SiO2 improves the packing density of ultra-high-performance alkali-activated concrete (UHP-AAC) and generates abundant calcium (alumino)silicate hydrate (C-(A-)S-H) gels to increase its density. Therefore, the interfacial bond strength and pull-out energy of steel fibers from UHP-AAC could be enhanced. At 2% nano-SiO2 replacement, the compressive strength of UHP-FRAAC was the highest (184.2 MPa), and its total porosity was the lowest, decreasing from 9.72% to 7.53%. The highest equivalent bond strength and strain energy density of UHP-FRAAC occurred at 2% nano-SiO2 replacement, i.e., 10.9 MPa and 72.5 kJ/m3, respectively. The maximum tensile strength of 14.5 MPa was observed at a nano-SiO2 content of 3%. Higher dosages of nano-SiO2, 3% or more, negatively affected the interfacial bond and tensile properties of UHP-FRAAC due to its agglomeration, but still exhibited higher performance than that of the plain UHP-FRAAC up to the dosage of 5%. Therefore, the optimal dosage of nano-SiO2 in UHP-FRAAC was suggested to be 2% by mass of silica fume.</description><identifier>ISSN: 0950-0618</identifier><identifier>EISSN: 1879-0526</identifier><identifier>DOI: 10.1016/j.conbuildmat.2023.132514</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bond performance ; Porosity ; Silica fume ; Silicon dioxide nanoparticles ; Tensile performance ; Ultra-high-performance fiber-reinforced alkali-activated concrete</subject><ispartof>Construction &amp; building materials, 2023-09, Vol.398, p.132514, Article 132514</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3</citedby><cites>FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3</cites><orcidid>0000-0003-2814-5482 ; 0009-0005-7180-0253 ; 0000-0002-2545-1073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piao, Rongzhen</creatorcontrib><creatorcontrib>Oh, Taekgeun</creatorcontrib><creatorcontrib>Kim, Gi Woong</creatorcontrib><creatorcontrib>Choi, Hong-Joon</creatorcontrib><creatorcontrib>Banthia, Nemkumar</creatorcontrib><creatorcontrib>Yoo, Doo-Yeol</creatorcontrib><title>Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles</title><title>Construction &amp; building materials</title><description>•Nano-SiO2 improves the packing density and generates abundant C-A-S-H gels of UHP-AAC.•Interfacial bond strength and pull-out energy of steel fibers in UHP-AAC are improved by nano-SiO2.•The highest compressive strength 184 MPa and lowest porosity of 7.53% are achieved.•The highest tensile strength and strain energy density of UHP-FRAAC are achieved at 2% nano-SiO2 replacement.•Higher dosages of nano-SiO2, 3% or more, negatively affect the tensile properties of UHP-FRAAC due to its agglomeration. This study investigates the effect of silicon dioxide nanoparticles (nano-SiO2) on the microstructure and mechanical properties of eco-friendly, cementless ultra-high-performance fiber-reinforced alkali-activated concrete (UHP-FRAAC). Various amounts of nano-SiO2 were adopted in a range of 0%-5% of the mass of silica fume (SF). The experimental results showed that the addition of nano-SiO2 improves the packing density of ultra-high-performance alkali-activated concrete (UHP-AAC) and generates abundant calcium (alumino)silicate hydrate (C-(A-)S-H) gels to increase its density. Therefore, the interfacial bond strength and pull-out energy of steel fibers from UHP-AAC could be enhanced. At 2% nano-SiO2 replacement, the compressive strength of UHP-FRAAC was the highest (184.2 MPa), and its total porosity was the lowest, decreasing from 9.72% to 7.53%. The highest equivalent bond strength and strain energy density of UHP-FRAAC occurred at 2% nano-SiO2 replacement, i.e., 10.9 MPa and 72.5 kJ/m3, respectively. The maximum tensile strength of 14.5 MPa was observed at a nano-SiO2 content of 3%. Higher dosages of nano-SiO2, 3% or more, negatively affected the interfacial bond and tensile properties of UHP-FRAAC due to its agglomeration, but still exhibited higher performance than that of the plain UHP-FRAAC up to the dosage of 5%. Therefore, the optimal dosage of nano-SiO2 in UHP-FRAAC was suggested to be 2% by mass of silica fume.</description><subject>Bond performance</subject><subject>Porosity</subject><subject>Silica fume</subject><subject>Silicon dioxide nanoparticles</subject><subject>Tensile performance</subject><subject>Ultra-high-performance fiber-reinforced alkali-activated concrete</subject><issn>0950-0618</issn><issn>1879-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxD-YDXGwnceMlqnhJSGzYW85kQqfkUdkuj__hQ3FUFixZjXRn7p2rw9iVkksllbneLmEamz317eDTUktdLFWhK1UesYWqV1bISptjtpC2kkIaVZ-ysxi3UkqjjV6w79tx40fAlg8EYYop7CHtA3I_ZgkhLwl8z3dh2mFIhJFPHQcccEw9xsj3fQpebOh1I_JBN4VhjuMdNRhEQBqzNMf7_s33JDwkevcpC7k3BEzIPyhteKSessJbmj6pRT76cdr5_BDylwt20vk-4uXvPGcvd7cv6wfx9Hz_uL55ElBolQRohVYWNdiya1erGmoNaOpa1QZVVwJaU5pVpXVZeStbYxuprJS67MqmqXxxzuwhdgYRA3ZuF2jw4csp6Wbabuv-0HYzbXegnb3rgxdzv3fC4CIQzmApICTXTvSPlB9XspRO</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Piao, Rongzhen</creator><creator>Oh, Taekgeun</creator><creator>Kim, Gi Woong</creator><creator>Choi, Hong-Joon</creator><creator>Banthia, Nemkumar</creator><creator>Yoo, Doo-Yeol</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2814-5482</orcidid><orcidid>https://orcid.org/0009-0005-7180-0253</orcidid><orcidid>https://orcid.org/0000-0002-2545-1073</orcidid></search><sort><creationdate>20230922</creationdate><title>Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles</title><author>Piao, Rongzhen ; Oh, Taekgeun ; Kim, Gi Woong ; Choi, Hong-Joon ; Banthia, Nemkumar ; Yoo, Doo-Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bond performance</topic><topic>Porosity</topic><topic>Silica fume</topic><topic>Silicon dioxide nanoparticles</topic><topic>Tensile performance</topic><topic>Ultra-high-performance fiber-reinforced alkali-activated concrete</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piao, Rongzhen</creatorcontrib><creatorcontrib>Oh, Taekgeun</creatorcontrib><creatorcontrib>Kim, Gi Woong</creatorcontrib><creatorcontrib>Choi, Hong-Joon</creatorcontrib><creatorcontrib>Banthia, Nemkumar</creatorcontrib><creatorcontrib>Yoo, Doo-Yeol</creatorcontrib><collection>CrossRef</collection><jtitle>Construction &amp; building materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piao, Rongzhen</au><au>Oh, Taekgeun</au><au>Kim, Gi Woong</au><au>Choi, Hong-Joon</au><au>Banthia, Nemkumar</au><au>Yoo, Doo-Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles</atitle><jtitle>Construction &amp; building materials</jtitle><date>2023-09-22</date><risdate>2023</risdate><volume>398</volume><spage>132514</spage><pages>132514-</pages><artnum>132514</artnum><issn>0950-0618</issn><eissn>1879-0526</eissn><abstract>•Nano-SiO2 improves the packing density and generates abundant C-A-S-H gels of UHP-AAC.•Interfacial bond strength and pull-out energy of steel fibers in UHP-AAC are improved by nano-SiO2.•The highest compressive strength 184 MPa and lowest porosity of 7.53% are achieved.•The highest tensile strength and strain energy density of UHP-FRAAC are achieved at 2% nano-SiO2 replacement.•Higher dosages of nano-SiO2, 3% or more, negatively affect the tensile properties of UHP-FRAAC due to its agglomeration. This study investigates the effect of silicon dioxide nanoparticles (nano-SiO2) on the microstructure and mechanical properties of eco-friendly, cementless ultra-high-performance fiber-reinforced alkali-activated concrete (UHP-FRAAC). Various amounts of nano-SiO2 were adopted in a range of 0%-5% of the mass of silica fume (SF). The experimental results showed that the addition of nano-SiO2 improves the packing density of ultra-high-performance alkali-activated concrete (UHP-AAC) and generates abundant calcium (alumino)silicate hydrate (C-(A-)S-H) gels to increase its density. Therefore, the interfacial bond strength and pull-out energy of steel fibers from UHP-AAC could be enhanced. At 2% nano-SiO2 replacement, the compressive strength of UHP-FRAAC was the highest (184.2 MPa), and its total porosity was the lowest, decreasing from 9.72% to 7.53%. The highest equivalent bond strength and strain energy density of UHP-FRAAC occurred at 2% nano-SiO2 replacement, i.e., 10.9 MPa and 72.5 kJ/m3, respectively. The maximum tensile strength of 14.5 MPa was observed at a nano-SiO2 content of 3%. Higher dosages of nano-SiO2, 3% or more, negatively affected the interfacial bond and tensile properties of UHP-FRAAC due to its agglomeration, but still exhibited higher performance than that of the plain UHP-FRAAC up to the dosage of 5%. Therefore, the optimal dosage of nano-SiO2 in UHP-FRAAC was suggested to be 2% by mass of silica fume.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conbuildmat.2023.132514</doi><orcidid>https://orcid.org/0000-0003-2814-5482</orcidid><orcidid>https://orcid.org/0009-0005-7180-0253</orcidid><orcidid>https://orcid.org/0000-0002-2545-1073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-0618
ispartof Construction & building materials, 2023-09, Vol.398, p.132514, Article 132514
issn 0950-0618
1879-0526
language eng
recordid cdi_crossref_primary_10_1016_j_conbuildmat_2023_132514
source ScienceDirect Freedom Collection 2022-2024
subjects Bond performance
Porosity
Silica fume
Silicon dioxide nanoparticles
Tensile performance
Ultra-high-performance fiber-reinforced alkali-activated concrete
title Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20microstructure%20and%20mechanical%20properties%20of%20cementless%20ultra-high-performance%20fiber-reinforced%20alkali-activated%20concrete%20with%20silicon%20dioxide%20nanoparticles&rft.jtitle=Construction%20&%20building%20materials&rft.au=Piao,%20Rongzhen&rft.date=2023-09-22&rft.volume=398&rft.spage=132514&rft.pages=132514-&rft.artnum=132514&rft.issn=0950-0618&rft.eissn=1879-0526&rft_id=info:doi/10.1016/j.conbuildmat.2023.132514&rft_dat=%3Celsevier_cross%3ES0950061823022304%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-c21e9038c94fd778c82ce688186e1f4ce9646752245a90d69b0190024f4bb5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true