Loading…
Continuous sliding-mode control for underactuated systems: Relative degree one and two
This paper deals with the design of sliding-mode controllers for the stabilization of some types of underactuated systems. The proposed method takes advantage of the mechanical properties of three different types of underactuated systems instead of using nonlinear transformations. In order to design...
Saved in:
Published in: | Control engineering practice 2019-09, Vol.90, p.342-357 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the design of sliding-mode controllers for the stabilization of some types of underactuated systems. The proposed method takes advantage of the mechanical properties of three different types of underactuated systems instead of using nonlinear transformations. In order to design the controller, some sliding variables with relative degree one and two are introduced. The theoretical differences between these approaches are discussed and some simulation results show the practical differences. Experimental results on a cart–pole system are presented to validate the proposed control strategy. |
---|---|
ISSN: | 0967-0661 1873-6939 |
DOI: | 10.1016/j.conengprac.2019.07.014 |