Loading…
Data-driven decision-making for wastewater treatment process
Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision...
Saved in:
Published in: | Control engineering practice 2020-03, Vol.96, p.104305, Article 104305 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision-making method are threefold. First, a long-term prediction method, based on a self-organizing deep belief network (SDBN) and the multi-step prediction strategy, is developed to predict the membrane permeability. Second, a multi-warning method, based on an independent component analysis-principal component analysis (ICA-PCA) algorithm, is proposed to detect and warn membrane fouling with multiple indicators. Third, a multi-category diagnosis method, based on the kernel function, is designed to diagnose membrane fouling for providing the decision support. Finally, an intelligent decision-making system, consisting the above methods and required sensors, is developed for some real wastewater treatment plants. The experimental results demonstrated the efficiency and effectiveness of the proposed data-driven decision-making method. |
---|---|
ISSN: | 0967-0661 1873-6939 |
DOI: | 10.1016/j.conengprac.2020.104305 |